Glossary

This glossary contains words and phrases from Fourth through Sixth Grade Everyday Mathematics. To place the definitions in broader mathematical contexts, most entries also refer to sections in this Teacher's Reference Manual. In a definition, terms in italics are defined elsewhere in the glossary.

A

absolute value The distance between a number and 0 on a number line. The absolute value of a positive number is the number itself, and the absolute value of a negative number is the opposite of the number. The absolute value of 0 is 0 . The symbol for the absolute value of n is $|n|$.

abundant number A counting number whose proper factors add to a number greater than itself. For example, 12 is an abundant number because $1+2+3+4+6=16$, and 16 is greater than 12. Compare to deficient number and perfect number. See Section 9.8.2: Perfect, Deficient, and Abundant Numbers.
account balance An amount of money that you have or that you owe. See "in the black" and "in the red."
accurate As correct as possible according to an accepted standard. For example, an accurate measure or count is one with little or no error. See precise and Section 16.2: Approximation and Rounding.
acre A U.S. customary unit of area equal to 43,560 square feet. An acre is roughly the size of a football field. A square mile is 640 acres. See the Tables of Measures and Section 14.4: Area. acute angle An angle with a measure less than 90°. See Section 13.4.1: Angles and Rotations.

acute triangle A triangle with three acute angles. See Section 13.4.2: Polygons (n-gons).

An acute triangle
addend Any one of a set of numbers that are added. For example, in $5+3+1$, the addends are 5,3 , and 1 .
addition fact Two 1-digit numbers and their sum, such as $9+7=16$. See arithmetic facts and Section 16.3.3: Fact Practice.
addition/subtraction use class In Everyday Mathematics, situations in which addition or subtraction is used. These include parts-and-total, change, and comparison situations. See Section 10.3.1: Addition and Subtraction Use Classes. additive inverses Two numbers whose sum is 0 . Each number is called the additive inverse, or opposite, of the other. For example, 3 and -3 are additive inverses because $3+(-3)=0$.
address A letter-number pair used to locate a spreadsheet cell. For example, A5 is the fifth cell in column A.
address box A place where the address of a spreadsheet cell is shown when the cell is selected.
adjacent angles Two angles with a common side and vertex that do not otherwise overlap. See Section 13.6.3: Relations and Orientations of Angles.

Angles 1 and 2, 2 and 3,3 and 4, and 4 and 1 are pairs of adjacent angles.
adjacent sides Same as consecutive sides.
algebra (1) The use of letters of the alphabet to represent numbers in equations, formulas, and rules. (2) A set of rules and properties for a number system. (3) A school subject, usually first studied in eighth or ninth grade. See Section 17.2: Algebra and Uses of Variables.

Area $=$ length $*$ width $A=l * w$

$$
4+x=10
$$

$$
4+?=10
$$

$$
4+\ldots=10
$$

$$
4+\square=10
$$

$$
\begin{aligned}
a+b & =b+a \\
a(b+c) & =a b+a c
\end{aligned}
$$

Formulas, equations, and properties using algebra
algebraic expression An expression that contains a variable. For example, if Maria is 2 inches taller than Joe and if the variable M represents Maria's height, then the algebraic expression $M-2$ represents Joe's height. See algebra and Section 17.2: Algebra and Uses of Variables. algebraic order of operations Same as order of operations.
algorithm A set of step-by-step instructions for doing something, such as carrying out a computation or solving a problem. The most common algorithms are those for basic arithmetic computation, but there are many others. Some mathematicians and many computer scientists spend a great deal of time trying to find more efficient algorithms for solving problems. See Chapter 11: Algorithms.
altitude (1) In Everyday Mathematics, same as height of a figure. (2) Distance above sea level. Same as elevation.

Altitudes of 2-D figures are shown in blue.

Altitudes of 3-D figures are shown in blue.
analog clock (1) A clock that shows the time by the positions of the hour and minute hands.
(2) Any device that shows time passing in a continuous manner, such as a sundial. Compare to digital clock. See Section 15.2.1: Clocks.

An analog clock
-angle A suffix meaning angle, or corner.
angle A figure formed by two rays or two line segments with a common endpoint called the vertex of the angle. The rays or segments are called the sides of the angle. An angle is measured in degrees between 0 and 360. One side of an angle is the rotation image of the other side through a number of degrees. Angles are named after their vertex point alone as in $\angle A$ below; or by three points, one on each side and the vertex in the middle as in $\angle B C D$ below. See acute angle, obtuse angle, reflex angle, right angle, straight angle, and Section 13.4.1: Angles and Rotations.

anthropometry The study of human body sizes and proportions.
apex In a pyramid or cone, the vertex opposite the base. In a pyramid, all the nonbase faces meet at the apex. See Section 13.5.2: Polyhedrons and Section 13.5.3: Solids with Curved Surfaces.

approximately equal to (\approx) A symbol indicating an estimate or approximation to an exact value. For example, $\pi \approx 3.14$. See Section 16.2:
Approximation and Rounding.
arc of a circle A part of a circle between and including two endpoints on the circle. For example, the endpoints of the diameter of a circle define an arc called a semicircle. An arc is named by its endpoints.

area The amount of surface inside a 2 -dimensional figure. The figure might be a triangle or rectangle in a plane, the curved surface of a cylinder, or a state or country on Earth's surface. Commonly, area is measured in square units such as square miles, square inches, or square centimeters. See Section 14.4: Area.

The area of the United States is about $3,800,000$ square miles.
area model (1) A model for multiplication in which the length and width of a rectangle represent the factors, and the area of the rectangle represents the product. See Section 10.3.2: Multiplication and Division Use Classes. (2) A model showing fractions as parts of a whole. The whole is a region, such as a circle or a rectangle, representing the ONE, or unit whole. See Section 9.3.2: Uses of Fractions.

Area model for $3 * 5=15$

Area model for $\frac{2}{3}$
arithmetic facts The addition facts (whole-number addends 9 or less); their inverse subtraction facts; multiplication facts (whole-number factors 9 or less); and their inverse division facts, except there is no division by zero. There are:

100 addition facts: $0+0=0$ through $9+9=18$;
100 subtraction facts: $0-0=0$ through $18-9=9$;
100 multiplication facts: $0 * 0=0$ through $9 * 9=81$;
90 division facts: $\quad 0 / 1=0$ through $81 / 9=9$.
See extended facts, fact extensions, fact power, and Section 16.3.2: Basic Facts and Fact Power.
arm span Same as fathom.
array (1) An arrangement of objects in a regular pattern, usually rows and columns. (2) A rectangular array. In Everyday Mathematics, an array is a rectangular array unless specified otherwise. See Section 10.3.2: Multiplication and Division Use Classes and Section 14.4: Area.
Associative Property of Addition A property of addition that three numbers can be added in any order without changing the sum. For example,
$(4+3)+7=4+(3+7)$ because
$7+7=4+10$.
In symbols:
For any numbers a, b, and c,

$$
(a+b)+c=a+(b+c) .
$$

Subtraction is not associative. For example, $(4-3)+7 \neq 4-(3+7)$ because $8 \neq-6$.

Associative Property of Multiplication A property of multiplication that three numbers can be multiplied in any order without changing the product. For example, $(4 * 3) * 7=4 *(3 * 7)$ because $12 * 7=4 * 21$.
In symbols:
For any numbers a, b, and c,
$(a * b) * c=a *(b * c)$.
Division is not associative. For example, $(8 / 2) / 4 \neq 8 /(2 / 4)$ because $1 \neq 16$.
astronomical unit The average distance from Earth to the sun. Astronomical units measure distances in space. One astronomical unit is about 93 million miles or 150 million kilometers.
attribute A feature of an object or common feature of a set of objects. Examples of attributes include size, shape, color, and number of sides. Same as property.
autumnal equinox The first day of autumn, when the sun crosses the plane of Earth's equator and day and night are about 12 hours each. "Equinox" is from the Latin aequi- meaning "equal" and nox meaning "night." Compare to vernal equinox.
average A typical value for a set of numbers. In everyday life, average usually refers to the mean of the set, found by adding all the numbers and dividing by the number of numbers. In statistics, several different averages, or landmarks, are defined, including mean, median, and mode. See Section 12.2.4: Data Analysis.
axis of a coordinate grid Either of the two number lines used to form a coordinate grid. Plural is axes. See Section 15.3: Coordinate Systems.

axis of rotation A line about which a solid figure rotates.

3

ballpark estimate A rough estimate; "in the ballpark." A ballpark estimate can serve as a check of the reasonableness of an answer obtained through some other procedure, or it can be made when an exact value is unnecessary or impossible to obtain. See Section 16.1: Estimation.
bank draft A written order for the exchange of money. For example, $\$ 1,000$ bills are no longer printed so $\$ 1,000$ bank drafts are issued. People can exchange $\$ 1,000$ bank drafts for smaller bills, perhaps ten $\$ 100$ bills.
bar graph A graph with horizontal or vertical bars that represent data. See Section 12.2.3:
Organizing and Displaying Data.

Source: The New York Public Library Desk Reference
base (in exponential notation) A number that is raised to a power. For example, the base in 5^{3} is 5. See exponential notation and Section 10.1.2: Powers and Exponents.
base of a number system The foundation number for a numeration system. For example, our usual way of writing numbers uses a base-ten placevalue system. In programming computers or other digital devices, bases of $2,8,16$, or other powers of 2 are more common than base 10 .
base of a parallelogram (1) The side of a parallelogram to which an altitude is drawn. (2) The length of this side. The area of a parallelogram is the base times the altitude or height perpendicular to it. See height of a parallelogram and Section 13.4.2: Polygons (n-gons).

base of a prism or cylinder Either of the two parallel and congruent faces that define the shape of a prism or cylinder. In a cylinder, the base is a circle. See height of a prism or cylinder, Section 13.5.2: Polyhedrons, and Section 13.5.3: Solids with Curved Surfaces.

base of a pyramid or cone The face of a pyramid or cone that is opposite its apex. The base of a cone is a circle. See height of a pyramid or cone, Section 13.5.2: Polyhedrons, and Section 13.5.3: Solids with Curved Surfaces.

base of a rectangle (1) One of the sides of a rectangle. (2) The length of this side. The area of a rectangle is the base times the altitude or height. See height of a rectangle and Section 13.4.2: Polygons (n-gons).
base of a triangle (1) Any side of a triangle to which an altitude is drawn. (2) The length of this side. The area of a triangle is half the base times the altitude or height. See height of a triangle and Section 13.4.2: Polygons (n-gons).

base ten Our system for writing numbers that uses only the 10 symbols $0,1,2,3,4,5,6,7,8$, and 9 , called digits. You can write any number using one or more of these 10 digits, and each digit has a value that depends on its place in the number (its place value). In the base-ten system, each place has a value 10 times that of the place to its right, and 1 tenth the value of the place to its left.
base-10 blocks A set of blocks to represent ones, tens, hundreds, and thousands in the base-ten place-value system. In Everyday Mathematics, the unit block, or cube, has 1-cm edges; the ten block, or long, is 10 unit blocks in length; the hundred block, or flat, is 10 longs in width; and the thousand block, or big cube, is 10 flats high. See long, flat, and big cube for photos of the blocks. See base-10 shorthand and Section 9.9.1: Base-10 Blocks.
base-10 shorthand In Everyday Mathematics, a written notation for base-10 blocks. See Section 9.9.1: Base-10 Blocks.

Base-10-Block Shorthand

Name	Block	Shorthand
cube	\square	-
long	团	1
flat		
big cube		

baseline A set of data used for comparison with subsequent data. Baseline data can be used to judge whether an experimental intervention is successful.
benchmark A count or measure that can be used to evaluate the reasonableness of other counts, measures, or estimates. A benchmark for land area is that a football field is about one acre. A benchmark for length is that the width of an adult's thumb is about one inch. See Section 14.1: Personal Measures.
biased sample A sample that does not fairly represent the total population from which it was selected. A sample is biased if every member of the population does not have the same chance of being selected for the sample. See random sample and Section 12.2.2: Collecting and Recording Data.

big cube In Everyday

Mathematics, a base-10
block cube that measures $10-\mathrm{cm}$ by $10-\mathrm{cm}$ by $10-\mathrm{cm}$. A big cube consists of one thousand $1-\mathrm{cm}$ cubes. See Section 9.9.1: Base-10 Blocks.

A big cube
billion By U.S. custom, 1 billion is $1,000,000,000$ or 10^{9}. By British, French, and German custom, 1 billion is $1,000,000,000,000$ or 10^{12}.
bisect To divide a segment, angle, or figure into two parts of equal measure. See bisector.

Ray $B D$ bisects angle $A B C$.
bisector A line, segment, or ray that divides a segment, an angle, or a figure into two parts of equal measure. See bisect.
box-and-whiskers plot A plot displaying the spread, or distribution, of a data set using 5 landmarks: the minimum, lower quartile, median,

Landmark	Hair length (inches)
Minimum	14
Lower quartile	16
Median	20
Upper quartile	25
Maximum	32

braces See grouping symbols.
brackets See grouping symbols.
broken-line graph Same as line graph.
c
calibrate (1) To divide or mark a measuring tool with gradations such as the degree marks on a thermometer. (2) To test and adjust the accuracy of a measuring tool.
calorie A unit for measuring the amount of energy a food will produce when it is digested by the body. One calorie is the amount of energy required to raise the temperature of 1 liter of water 1° Celsius. Technically, this is a "large calorie" or kilocalorie. A "small calorie" is 1 thousandth of the large calorie.
capacity (1) The amount of space occupied by a 3-dimensional figure. Same as volume. (2) Less formally, the amount a container can hold. Capacity is often measured in units such as quarts, gallons, cups, or liters. See Section 14.5: Volume (Capacity). (3) The maximum weight a scale can measure. See Section 14.11.4: Scales and Balances. cartographer A person who makes maps.
cell (1) In a spreadsheet, the box where a vertical column and a horizontal row intersect. The address of a cell is the column letter followed by the row number. For example, cell B3 in column B, row 3, is highlighted below. See Section 3.1.3: Spreadsheets. (2) The box where a column and row in a table intersect.

	A	B	C	D
1				
2				
3				
4				

Celsius A temperature scale on which pure water at sea level freezes at 0° and boils at 100°. The Celsius scale is used in the metric system. A less common name for this scale is centigrade because there are 100 units between the freezing and boiling points of water. Compare to Fahrenheit. See Section 15.1.1: Temperature Scales.
census An official count of population and the recording of other demographic data such as age, gender, income, and education.
cent A penny; $\frac{1}{100}$ of a dollar. From the Latin word centesimus, which means "a hundredth part." See Section 14.9: Money.
center of a circle The point in the plane of a circle equally distant from all points on the circle. See Section 13.4.3: Circles and $\mathrm{Pi}(\pi)$.
center of a sphere The point equally distant from all points on a sphere. See Section 13.5.3: Solids with Curved Surfaces.

centi- A prefix meaning 1 hundredth.
centimeter (cm) A metric unit of length equivalent to 10 millimeters, $\frac{1}{10}$ of a decimeter, and $\frac{1}{100}$ of a meter. See the Tables of Measures and Section 14.2.2: Metric System.

chance The possibility that an outcome will occur in an uncertain event. For example, in flipping a coin there is an equal chance of getting HEADS or TAILS. See Section 12.1.2: The Language of Chance.
change diagram A diagram used in Everyday Mathematics to model situations in which quantities are either increased or decreased by addition or subtraction. The diagram includes a starting quantity, an ending quantity, and an amount of change. See situation diagram and Section 10.3.1: Addition and Subtraction Use Classes.

A change diagram for $14-5=9$
change-to-less story A number story about a change situation in which the ending quantity is less than the starting quantity. For example, a story about spending money is a change-to-less story. Compare to change-to-more story. See Section 10.3.1: Addition and Subtraction Use Classes.
change-to-more story A number story about a change situation in which the ending quantity is more than the starting quantity. For example, a story about earning money is a change-to-more story. Compare to change-to-less story. See Section 10.3.1: Addition and Subtraction Use Classes.
circle The set of all points in a plane that are equally distant from a fixed point in the plane called the center of the circle. The distance from the center to the circle is the radius of the circle. The diameter of a circle is twice its radius. Points inside a circle are not part of the circle. A circle together with its interior is called a disk or a circular region. See Section 13.4.3: Circles and $\operatorname{Pi}(\pi)$.

circle graph A graph in which a circle and its interior are divided into sectors corresponding to parts of a set of data. The whole circle represents the whole set of data. Same as pie graph and sometimes called a pie chart. See Section 12.2.3: Organizing and Displaying Data.

circumference The distance around a circle; its perimeter. The circumference of a sphere is the circumference of a circle on the sphere with the same center as the sphere. See Section 13.4.3: Circles and $\mathrm{Pi}(\pi)$ and Section 13.5.3: Solids with Curved Surfaces.

Class Data Pad In Everyday Mathematics, a large pad of paper used to store and recall data collected throughout the year. The data can be used for analysis, graphing, and generating number stories. See Section 5.2: Class Data Pad.
clockwise rotation The direction in which the hands move on a typical analog clock; a turn to the right.
coefficient The number, or constant, factor in a variable term in an expression. For example, in $3 c+8 d, 3$ and 8 are coefficients. See Section 17.2.2: Reading and Writing Open Sentences.
column (1) A vertical arrangement of objects or numbers in an array or a table.

(2) A vertical section of cells in a spreadsheet. column addition An addition algorithm in which the addends' digits are first added in each placevalue column separately, and then 10 -for- 1 trades are made until each column has only one digit. Lines may be drawn to separate the place-value columns. See Section 11.2.1: Addition Algorithms. column division A division algorithm in which vertical lines are drawn between the digits of the dividend. As needed, trades are made from one column into the next column at the right. The lines make the procedure easier to carry out. See Section 11.2.4: Division Algorithms. combine like terms To rewrite the sum or difference of like terms as a single term. For example, $5 a+6 a$ can be rewritten as $11 a$, because $5 a+6 a=(5+6) a=11 a$. Similarly, $16 t-3 t=13 t$. See Section 17.2.3: Simplifying Expressions.
common denominator A nonzero number that is a multiple of the denominators of two or more fractions. For example, the fractions $\frac{1}{2}$ and $\frac{2}{3}$ have common denominators $6,12,18$, and other multiples of 6 . Fractions with the same denominator already have a common denominator. See Section 11.3.1: Common Denominators.
common factor A factor of each of two or more counting numbers. For example, 4 is a common factor of 8 and 12 . See factor of a counting number and Section 9.8.1: Prime and Composite Numbers: Divisibility.
common fraction A fraction in which the numerator and the nonzero denominator are both integers.

Commutative Property of Addition A property of addition that two numbers can be added in either order without changing the sum. For example, $5+10=10+5$. In Everyday Mathematics, this is called a turn-around fact, and the two Commutative Properties are called turn-around rules.

In symbols:
For any numbers a and $b, a+b=b+a$.
Subtraction is not commutative. For example, $8-5 \neq 5-8$ because $3 \neq-3$. See Section 16.3.3: Fact Practice.

Commutative Property of Multiplication A property of multiplication that two numbers can be multiplied in either order without changing the product. For example, $5 * 10=10 * 5$. In Everyday Mathematics, this is called a turn-around fact, and the two Commutative Properties are called turn-around rules.
In symbols:
For any numbers a and $b, a * b=b * a$.
Division is not commutative. For example, $10 / 5 \neq 5 / 10$ because $2 \neq \frac{1}{2}$. See Section 16.3.3: Fact Practice.
comparison diagram A diagram used in Everyday Mathematics to model situations in which two quantities are compared by addition or subtraction. The diagram contains two quantities and their difference. See situation diagram and Section 10.3.1: Addition and Subtraction Use Classes.

A comparison diagram for $12=9+$?
comparison story A number story about the difference between two quantities. Comparison situations can lead to either addition or subtraction depending on whether one of the compared quantities or the difference between them is unknown. See Section 10.3.1: Addition and Subtraction Use Classes.
compass (1) A tool used to draw circles and arcs and copy line segments. Certain geometric figures can be drawn with compass-and-straightedge construction. See Section 13.13.1: Compass-andStraightedge Constructions. (2) A tool used to determine geographic direction.

compass-and-straightedge construction A drawing of a geometric figure made using only a compass and a straightedge with no measurement allowed. See Section 13.13.1: Compass-and-Straightedge Constructions.
compass rose Same as map direction symbol.
complement of a number n (1) In Everyday Mathematics, the difference between n and the next higher multiple of 10 . For example, the complement of 4 is $10-4=6$ and the complement of 73 is $80-73=7$. (2) The difference between n and the next higher power of 10 . In this definition, the complement of 73 is $100-73=27$.
complementary angles Two angles whose measures add to 90°. Complementary angles do not need to be adjacent. Compare to supplementary angles. See Section 13.6.3: Relations and Orientations of Angles.

$\angle 1$ and $\angle 2 ; \angle A$ and $\angle B$ are pairs of complementary angles.
composite number A counting number greater than 1 that has more than two factors. For example, 10 is a composite number because it has four factors: $1,2,5$, and 10 . A composite number is divisible by at least three whole numbers. Compare to prime number. See Section 9.8.1: Prime and Composite Numbers: Divisibility. compound unit A quotient or product of units. For example, miles per hour ($\mathrm{mi} / \mathrm{hr}$, mph), square centimeters (cm^{2}), and person-hours are compound units.
concave polygon A polygon on which there are at least two points that can be connected with a line segment that passes outside the polygon.

A concave polygon For example, segment $A D$ is outside the hexagon between B and C. Informally, at least one vertex appears to be "pushed inward." At least one interior angle has measure greater than 180°. Same as nonconvex polygon. Compare to convex polygon. See Section 13.4.2: Polygons (n-gons).
concentric circles Circles that have the same center but radii of different lengths.

Concentric circles
cone A geometric solid with a circular base, a vertex (apex) not in the plane of the base, and all of the line segments with one endpoint at the apex and the other endpoint on the circumference of the base. See Section 13.5.3: Solids with Curved Surfaces.

congruent figures (\cong) Figures having the same size and shape. Two figures are congruent if they match exactly when one is placed on top of the other after a combination of slides, flips, and/or turns. In diagrams of congruent figures, the corresponding congruent sides may be marked with the same number of hash marks. The symbol \cong means "is congruent to." See Section 13.6.2: Congruence and Similarity.

Congruent pentagons

Congruent prisms
consecutive Following one after another in an uninterrupted order. For example, A, B, C, and D are four consecutive letters of the alphabet; 6, 7, 8,9 , and 10 are five consecutive whole numbers. consecutive angles Two angles in a polygon with a common side.

Angles A and B, B and C, and C and A are pairs of consecutive angles.
consecutive sides (1) Two sides of a polygon with a common vertex. (2) Two sides of a polyhedron with a common edge. Same as adjacent sides. See Section 13.6.4: Other Geometric Relations.

Sides $A B$ and $B C, B C$ and $C A$, and $C A$ and $A B$ are pairs of consecutive sides.
consecutive vertices The vertices of consecutive angles in a polygon.
constant A quantity that does not change. For example, the ratio of the circumference of a circle to its diameter is the famous constant π. In $x+3=y, 3$ is a constant. See Section 17.2.2: Reading and Writing Open Sentences.
continuous model of area A way of thinking about area as sweeping one dimension of a plane figure across the other dimension. For example, the paint roller below shows how the area of a rectangle can be modeled continuously by sweeping the shorter side across the longer side. See Section 14.4.1: Discrete and Continuous Models of Area.

A continuous model of area
continuous model of volume A way of thinking about volume as sweeping a 2 -dimensional cross section of a solid figure across the third dimension. For example, imagine filling the box below with water. The surface of the water would sweep up the height of the box. See Section 14.5.1: Discrete and Continuous Models of Volume.
 contour line A curve on a map through places where a measurement such as temperature, elevation, air pressure, or growing season is the same. Contour lines often separate regions that have been differently colored to show a range of conditions. See contour map and Section 15.4.3: Contour Maps.

A temperature contour map
contour map A map that uses contour lines to indicate areas having a particular feature, such as elevation or temperature. See Section 15.4.3: Contour Maps.
conversion fact A fixed relationship such as 1 yard $=3$ feet or 1 inch $=2.54$ centimeters that can be used to convert measurements within or between systems of measurement. See Section 14.2.3: Converting between Measures.
convex polygon A polygon on which no two points can be connected with a line segment that passes outside the polygon. Informally, all vertices appear to be "pushed outward." Each angle in the polygon measures less than 180°. Compare to concave polygon.
See Section 13.4.2:
Polygons (n-gons).

A convex polygon
coordinate (1) A number used to locate a point on a number line; a point's distance from an origin. (2) One of the numbers in an ordered pair or triple that locates a point on a coordinate grid or in coordinate space, respectively. See Section 9.9.2: Number Grids, Scrolls, and Lines and Section 15.3: Coordinate Systems. coordinate grid (rectangular coordinate grid) A reference frame for locating points in a plane by means of ordered pairs of numbers. A rectangular coordinate grid is formed by two number lines that intersect at right angles at their zero points. See Section 15.3.2: 2- and 3-Dimensional Coordinate Systems.

corner Same as vertex.
corresponding angles (1) Angles in the same relative position in similar or congruent figures. Pairs of corresponding angles are marked either by the same number of arcs or by the same number of hash marks per arc.

(2) Two angles in the same relative position when two lines are intersected by a transversal. In the diagram, $\angle a$ and $\angle e, \angle b$ and $\angle f, \angle d$ and $\angle h$, and $\angle c$ and $\angle g$ are pairs of corresponding angles. If any two corresponding angles in a pair are congruent, then the two lines are parallel.

corresponding sides Sides in the same relative position in similar or congruent figures. Pairs of corresponding sides are marked with the same number of hash marks.

corresponding vertices Vertices in the same relative position in similar or congruent figures. Pairs of corresponding vertices can be identified by their corresponding angles. Sometimes corresponding vertices have the same letter name, but one has a "prime" symbol as in A and A^{\prime}.

counterclockwise rotation Opposite the direction in which the hands move on a typical analog clock; a turn to the left.
counting numbers The numbers used to count things. The set of counting numbers is $\{1,2,3$, $4, \ldots$. . Sometimes 0 is included, but not in Everyday Mathematics. Counting numbers are in the sets of whole numbers, integers, rational numbers, and real numbers, but each of these sets include numbers that are not counting numbers. See Section 9.2.1: Counting.
counting-up subtraction A subtraction algorithm in which a difference is found by counting or adding up from the smaller number to the larger number. For example, to calculate $87-49$, start at 49 , add 30 to reach 79 , and then add 8 more to reach 87 . The difference is $30+8=38$. See Section 11.2.2: Subtraction Algorithms.
cover-up method An informal method for finding a solution of an open sentence by covering up a part of the sentence containing a variable. credit An amount added to an account balance; a deposit.
cross multiplication The process of rewriting a proportion by calculating cross products. Cross multiplication can be used in solving open proportions. In the example below, the cross products are 60 and $4 z$. See Section 17.2.4: Solving Open Sentences.

$$
3 * 20=60{ }_{\frac{3}{4}=\frac{z}{20}} 4 * z=4 z
$$

To solve:

$$
\begin{aligned}
\frac{3}{4} & =\frac{z}{20} \\
3 * 20 & =4 * z \\
60 & =4 z \\
60 / 4 & =4 z / 4 \\
15 & =z
\end{aligned}
$$

cross products The two products of the numerator of each fraction and the denominator of the other fraction in a proportion. The cross products of a proportion are equal. For example, in the proportion $\frac{2}{3}=\frac{6}{9}$, the cross products $2 * 9$ and $3 * 6$ are both 18 .

$$
2 * 9=18 \quad \frac{2}{3}=\frac{6}{9}
$$

cross section A shape formed by the intersection of a plane and a geometric solid.

Cross sections of a cylinder and a pyramid
cube (1) A regular polyhedron with 6 square faces. A cube has 8 vertices and 12 edges. See Section 13.5.2: Polyhedrons.

Cubes
(2) In Everyday Mathematics, the smaller cube of the base-10 blocks, measuring 1 cm on each edge. See Section 9.9.1: Base-10 Blocks.
cube of a number The product of a number used as a factor three times. For example, the cube of 5 is $5 * 5 * 5=5^{3}=125$. See Section 10.1.2:
Powers and Exponents.
cubic centimeter (cc or cm ${ }^{3}$) A metric unit of volume or capacity equal to the volume of a cube with $1-\mathrm{cm}$ edges. $1 \mathrm{~cm}^{3}=1$ milliliter (mL). See the Tables of Measures and Section 14.5: Volume (Capacity).
cubic unit A unit such as cubic centimeters, cubic inches, cubic feet, and cubic meters used to measure volume or capacity. See Section 14.5: Volume (Capacity).
cubit An ancient unit of length, measured from the point of the elbow to the end of the middle finger. The cubit has been standardized at various

Cubit times between 18 and 22 inches. The Latin word cubitum means "elbow." See Section 14.1: Personal Measures. cup (c) A U.S. customary unit of volume or capacity equal to 8 fluid ounces or $\frac{1}{2}$ pint. See the Tables of Measures and Section 14.5: Volume (Capacity).
curved surface A 2-dimensional surface that does not lie in a plane. Spheres, cylinders, and cones each have one curved surface. See Section 13.5.3: Solids with Curved Surfaces.
customary system of measurement In Everyday Mathematics, same as U.S. customary system of measurement.
cylinder A geometric solid with two congruent, parallel circular regions for bases and a curved face formed by all the segments with an endpoint on each circle that are parallel to a segment with endpoints at the centers of the circles. Also called a circular cylinder. See Section 13.5.3: Solids with Curved Surfaces.

Cylinders

D

data Information that is gathered by counting, measuring, questioning, or observing. Strictly, data is the plural of datum, but data is often used as a singular word. See Section 12.2: Data Collection, Organization, and Analysis.
debit An amount subtracted from a bank balance; a withdrawal.
deca- A prefix meaning 10.
decagon A 10-sided polygon. See Section 13.4.2: Polygons (n-gons).
deci- A prefix meaning 1 tenth.
decimal (1) In Everyday Mathematics, a number written in standard base-ten notation containing a decimal point, such as 2.54 . (2) Any number written in standard base-ten notation. See repeating decimal, terminating decimal, Section 9.3.1: Fraction and Decimal Notation, and Section 9.3.4: Rational Numbers and Decimals.
decimal notation In Everyday Mathematics, same as standard notation.
decimal point A mark used to separate the ones and tenths places in decimals. A decimal point separates dollars from cents in dollars-and-cents notation. The mark is a dot in the U.S. customary system and a comma in Europe and some other countries.
decimeter (dm) A metric unit of length equivalent to $\frac{1}{10}$ meter, or 10 centimeters.
deficient number A counting number whose proper factors add to less than the number itself. For example, 10 is a deficient number because the sum of its proper factors is $1+2+5=8$, and 8 is less than 10. Compare to abundant number and perfect number. See Section 9.8.2: Perfect, Deficient, and Abundant Numbers. degree (${ }^{\circ}$) (1) A unit of measure for angles based on dividing a circle into 360 equal parts. Lines of latitude and longitude are measured in degrees, and these degrees are based on angle measures. See Section 13.4.1: Angles and Rotations and Section 15.4.4: The Global Grid System. (2) A unit for measuring temperature. See degree Celsius, degree Fahrenheit, and Section 15.1.1: Temperature Scales. The symbol ${ }^{\circ}$ means degrees of any type. degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$ The unit interval on Celsius thermometers and a metric unit for measuring temperatures. Pure water at sea level freezes at $0^{\circ} \mathrm{C}$ and boils at $100^{\circ} \mathrm{C}$. See Section 15.1.1: Temperature Scales.
degree Fahrenheit (${ }^{\circ} \mathrm{F}$) The unit interval on Fahrenheit thermometers and a U.S. customary unit for measuring temperatures. Pure water at sea level freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$. A saturated salt solution freezes at $0^{\circ} \mathrm{F}$. See Section 15.1.1: Temperature Scales. denominator The nonzero divisor b in a fraction $\frac{a}{b}$ and a / b. In a part-whole fraction, the denominator is the number of equal parts into which the whole, or ONE, has been divided. Compare to numerator. See Section 9.3.1: Fraction and Decimal Notation. density A rate that compares the mass of an object to its volume. For example, a ball with mass 20 grams and volume 10 cubic centimeters has a density of $\frac{20 \mathrm{~g}}{10 \mathrm{~cm}^{3}}=2 \mathrm{~g} / \mathrm{cm}^{3}$, or 2 grams per cubic centimeter.
dependent variable (1) A variable whose value is dependent on the value of at least one other variable in a function. (2) The variable y in a function defined by the set of ordered pairs (x, y). Same as the output of the function. Compare to independent variable. See Section 17.2.1: Uses of Variables.
diagonal (1) A line segment joining two nonconsecutive vertices of a polygon. See Section 13.4.2: Polygons (n-gons). (2) A segment joining two nonconsecutive vertices on different faces of a polyhedron.

(3) A line of objects or numbers between opposite corners of an array or a table.

A diagonal of an array
diameter (1) A line segment that passes through the center of a circle or sphere and has endpoints on the circle or sphere. (2) The length of such a segment. The diameter of a circle or sphere is twice the radius. See Section 13.4.3: Circles and $\operatorname{Pi}(\pi)$ and Section 13.5.3: Solids with Curved Surfaces.

difference The result of subtracting one number from another. For example, the difference of 12 and 5 is $12-5=7$.
digit (1) Any one of the symbols $0,1,2,3,4,5,6$, 7,8 , and 9 in the base-ten numeration system. For example, the numeral 145 is made up of the digits 1,4 , and 5. (2) Any one of the symbols in any number system. For example, A, B, C, D, E, and F are digits along with 0 through 9 in the base- 16 notation used in some computer programming.
digital clock A clock that shows the time with numbers of hours and minutes, usually separated by a colon. This display is discrete, not continuous, meaning that the display jumps to a new time after a minute delay. Compare to analog clock. See Section 15.2.1: Clocks.

A digital clock
dimension (1) A measure along one direction of an object, typically length, width, or height. For example, the dimensions of a box might be $24-\mathrm{cm}$ by $20-\mathrm{cm}$ by $10-\mathrm{cm}$. (2) The number of coordinates necessary to locate a point in a geometric space. For example, a line has one dimension because one coordinate uniquely locates any point on the line. A plane has two dimensions because an ordered pair of two coordinates uniquely locates any point in the plane. See Section 13.1: Dimension.
discount The amount by which a price of an item is reduced in a sale, usually given as a fraction or percent of the original price, or as a "percent off." For example, a $\$ 4$ item on sale for $\$ 3$ is discounted to 75% or $\frac{3}{4}$ of its original price. A $\$ 10.00$ item at " 10% off" costs $\$ 9.00$, or $\frac{1}{10}$ less than the usual price.
discrete model of area A way of thinking about area as filling a figure with unit squares and counting them. For example, the rectangle below has been filled with 40 square units. See Section 14.4.1: Discrete and Continuous Models of Area.

discrete model of volume A way of thinking about volume as filling a figure with unit cubes and counting them. For example, the box below will eventually hold 108 cubic units. See Section 14.5.1: Discrete and Continuous Models of Volume.

disk A circle and its interior region.
displacement method A method for estimating the volume of an object by submerging it in water and then measuring the volume of water it displaces. The method is especially useful for finding the volume of an irregularly shaped object. Archimedes of Syracuse (circa 287-212 B.c.) is famous for having solved a problem of finding the volume and density of a king's crown by noticing how his body displaced water in a bathtub and applying the method to the crown.
He reportedly shouted "Eureka!" at the discovery, and so similar insights are today sometimes called Eureka moments. See Section 14.5: Volume (Capacity).
Distributive Property of Multiplication over Addition A property relating multiplication to a sum of numbers by distributing a factor over the terms in the sum. For example,
$2 *(5+3)=(2 * 5)+(2 * 3)=10+6=16$.
In symbols:
For any numbers a, b, and c :

$$
\begin{aligned}
& a *(b+c)=(a * b)+(a * c) \\
& \text { or } a(b+c)=a b+a c
\end{aligned}
$$

See Section 17.2.3: Simplifying Expressions.
Distributive Property of Multiplication over Subtraction A property relating multiplication to a difference of numbers by distributing a factor over the terms in the difference. For example,
$2 *(5-3)=(2 * 5)-(2 * 3)=10-6=4$.
In symbols:
For any numbers a, b, and c :
$a *(b-c)=(a * b)-(a * c)$
or $a(b-c)=a b-a c$
See Section 17.2.3: Simplifying Expressions.
dividend The number in division that is being divided. For example, in $35 / 5=7$, the dividend is 35 .

divisibility rule A shortcut for determining whether a counting number is divisible by another counting number without actually doing the division. For example, a number is divisible by 5 if the digit in the ones place is 0 or 5 . A number is divisible by 3 if the sum of its digits is divisible by 3. See Section 9.8.1: Prime and Composite Numbers: Divisibility. divisibility test A test to see if a divisibility rule applies to a particular number. See Section 9.8.1: Prime and Composite Numbers: Divisibility. divisible by If the larger of two counting numbers can be divided by the smaller with no remainder, then the larger is divisible by the smaller. For example, 28 is divisible by 7 , because $28 / 7=4$ with no remainder. If a number n is divisible by a number d, then d is a factor of n. Every counting number is divisible by itself. See Section 9.8.1: Prime and Composite Numbers: Divisibility. Division of Fractions Property A rule for dividing that says division by a fraction is the same a multiplication by the reciprocal of the fraction. Another name for this property is the "invert and multiply rule." For example,

$$
\begin{aligned}
& 5 \div 8=5 * \frac{1}{8}=\frac{5}{8} \\
& 15 \div \frac{3}{5}=15 * \frac{5}{3} \\
&=\frac{75}{3}=25 \\
& \frac{1}{2} \div \frac{3}{5}=\frac{1}{2} * \frac{5}{3}=\frac{5}{6}
\end{aligned}
$$

In symbols:
For any a and nonzero b, c, and d :

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} * \frac{d}{c}
$$

If $b=1$, then $\frac{a}{b}=a$ and the property is applied as in the first two examples above. See Section 11.3.5: Fraction Division.
division symbols The number a divided by the number b is written in a variety of ways. In Everyday Mathematics, $a \div b, a / b$, and $\frac{a}{b}$ are the most common notations, while $b \sqrt{a}$ is used to set up the traditional long-division algorithm. a:b is sometimes used in Europe, \div is common on calculators, and \square is common on computer keyboards. See Section 10.1.1: The Four Basic Arithmetic Operations.
divisor In division, the number that divides another number, the dividend. For example, in $35 / 7=5$, the divisor is 7 . See the diagram under the definition of dividend.
dodecahedron A polyhedron with 12 faces. If each face is a regular pentagon, it is one of the five regular polyhedrons. See Section 13.5.2: Polyhedrons.

A decagonal prism

doubles fact The sum (or product) of a 1-digit number added to (or multiplied by) itself, such as $4+4=8$ or $3 * 3=9$. A doubles fact does not have a turn-around fact partner.
double-stem plot A stem-and-leaf plot in which each stem is split into two parts. Numbers on the original stem ending in 0 through 4 are plotted on one half of the split, and numbers ending in 5 through 9 are plotted on the other half. Doublestem plots are useful if the original stem-and-leaf plot has many leaves falling on few stems. The following plot shows eruption duration in minutes of the Old Faithful Geyser. For example, the first two stems show one observation each of durations lasting $42,44,45,48$, and 49 minutes. See Section 12.2.3: Organizing and Displaying Data.

Eruption Duration of Old Faithful (minutes)	
$\begin{gathered} \hline \text { Stems } \\ (10 \mathrm{~s}) \end{gathered}$	Leaves (1s)
4	24
4	589
5	01113334
5	5566778
6	011
6	677889
7	0111223344
7	556667788999
8	01112233444
8	56666889
9	
9	
A double-stem plot	

edge (1) Any side of a polyhedron's faces.
(2) A line segment or curve where two surfaces of a geometric solid meet. See Section 13.5.2: Polyhedrons and Section 13.5.3: Solids with Curved Surfaces.

Egyptian multiplication A 4,000-year-old multiplication algorithm based on repeated doubling of one factor. See Section 11.2.3: Multiplication Algorithms.
elevation A height above sea level. Same as altitude (2).
ellipse A closed, oval figure that is the set of points in a plane, the sum of whose distances from two fixed points is constant. Each of the fixed points is called a focus of the ellipse. You can draw
 an ellipse by attaching the ends of a string at the two focus points, and moving a pencil or pen taut against the string around the focus points. The length of the string is the constant.
embedded figure A figure entirely enclosed within another figure.

Triangle $A D E$ is embedded in square $A D C B$.
endpoint A point at the end of a line segment, ray, or arc. These shapes are usually named using their
 endpoints. For example, the segment shown is "segment $T L$ " or "segment $L T$."
enlarge To increase the size of an object or a figure without changing its shape. Same as stretch. See size-change factor and Section 13.7.2: Size-Change Transformations equal Same as equivalent.
equal-grouping story A number story in which a quantity is divided into equal groups. The total and size of each group are known. For example, How many tables seating 4 people each are needed to seat 52 people? is an equal-grouping story. Often division can be used to solve equal-grouping stories. Compare to measurement division and equal-sharing story and see Section 10.3.2: Multiplication and Division Use Classes. equal groups Sets with the same number of elements, such as cars with 5 passengers each, rows with 6 chairs each, and boxes containing 100 paper clips each. See Section 10.3.2: Multiplication and Division Use Classes. equal-groups notation In Everyday Mathematics, a way to denote a number of equal-size groups. The size of each group is shown inside square brackets and the number of groups is written in front of the brackets. For example, 3 [6s] means 3 groups with 6 in each group. In general, n [bs] means n groups with b in each group.
equal parts Equivalent parts of a whole. For example, dividing a pizza into 4 equal parts means each part is $\frac{1}{4}$ of the pizza and is equal in size to the other 3 parts. See Section 9.3.2: Uses of Fractions.

4 equal parts, each $\frac{1}{4}$ of a pizza
equal-sharing story A number story in which a quantity is shared equally. The total quantity and the number of groups are known. For example, There are 10 toys to share equally among 4 children; how many toys will each child get? is an equal-sharing story. Often division can be used to solve equal-sharing stories. Compare to partitive division and equal-grouping story. See Section 10.3.2: Multiplication and Division Use Classes.
equally likely outcomes Outcomes of a chance experiment or situation that have the same probability of happening. If all the possible outcomes are equally likely, then the probability of an event is equal to:
$\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}$
See favorable outcomes, random experiment, and Section 12.1.2: The Language of Chance.
equation A number sentence that contains an equal sign. For example, $5+10=15$ and $P=2 l+2 w$ are equations. See Section 10.2: Reading and Writing Number Sentences and Section 17.2.2: Reading and Writing Open Sentences.
equator An imaginary circle around Earth halfway between the North Pole and the South Pole. The equator is the 0° line for latitude. equidistant marks A series of marks separated by a constant space. See unit interval.

equilateral polygon A polygon in which all sides are the same length. See Section 13.4.2: Polygons (n-gons).

Equilateral polygons

equilateral triangle

A triangle with all three sides equal in length. Each angle of an equilateral triangle measures 60°, so it is also called an equiangular triangle.

See Section 13.4.2:
Polygons (n-gons).
equivalent Equal in value but possibly in a different form. For example, $\frac{1}{2}, 0.5$, and 50% are all equivalent. See Section 9.7.1: Equality.
equivalent equations Equations with the same solution. For example, $2+x=4$ and $6+x=8$ are equivalent equations with the common solution 2. See Section 17.2.4: Solving Open Sentences.
equivalent fractions Fractions with different denominators that name the same number. See Section 9.3.3: Rates, Ratios, and Proportions.
equivalent names Different ways of naming the same number. For example, $2+6,4+4$, $12-4,18-10,100-92,5+1+2$, eight, VIII, and HHIII are all equivalent names for 8 . See name-collection box.
equivalent rates Rates that make the same comparison. For example, the rates $\frac{60 \text { miles }}{1 \text { hour }}$ and $\frac{1 \text { mile }}{1 \text { minute }}$ are equivalent. Equivalent fractions represent equivalent rates if the units for the rates are the same. For example $\frac{12 \text { pages }}{4 \text { minutes }}$ and $\frac{6 \text { pages }}{2 \text { minutes }}$ are equivalent rates because $\frac{12}{4}$ and $\frac{6}{2}$ are equivalent with the same unit of pages per minute.
equivalent ratios Ratios that make the same comparison. Equivalent fractions represent equivalent ratios. For example, $\frac{1}{2}$ and $\frac{4}{8}$ are equivalent ratios. See Section 9.3.3: Rates, Ratios, and Proportions.
estimate (1) An answer close to, or approximating, an exact answer. (2) To make an estimate.
See Section 16.1: Estimation.
European subtraction A subtraction algorithm in which the subtrahend is increased when regrouping is necessary. The algorithm is commonly used in Europe and in certain parts of the United States. See Section 11.2.2: Subtraction Algorithms.
evaluate an algebraic expression To replace each variable in an algebraic expression with a number and then calculate a single value for the expression.
evaluate a formula To find the value of one variable in a formula when the values of the other variables are known.
evaluate a numerical expression To carry out the operations in a numerical expression to find a single value for the expression.
even number (1) A counting number that is divisible by 2. (2) An integer that is divisible by 2. Compare to odd number and see Section 17.1: Patterns, Sequences, and Functions.
event A set of possible outcomes to an experiment. For example, in an experiment flipping two coins, getting 2 HEADS is an event, as is getting 1 HEAD and 1 TAIL. The probability of an event is the chance that the event will happen. For example, the probability that a fair coin will land HEADS up is $\frac{1}{2}$. If the probability of an event is 0 , the event is impossible. If the probability is 1 , the event is certain. See Section 12.1: Probability.
expanded notation A way of writing a number as the sum of the values of each digit. For example, 356 is $300+50+6$ in expanded notation. Compare to standard notation, scientific notation, and number-and-word notation.
expected outcome The average outcome over a large number of repetitions of a random experiment. For example, the expected outcome of rolling one die is the average number of spots landing up over a large number of rolls. Because each face of a fair die has equal probability of landing up, the expected outcome is $\frac{(1+2+3+4+5+6)}{6}=\frac{21}{6}=3 \frac{1}{2}$. This means that the average of many rolls of a fair die is expected to be about $3 \frac{1}{2}$. More formally, the expected outcome is defined as an average over infinitely many repetitions.
exponent A small raised number used in exponential notation to tell how many times the base is used as a factor. For example, in 5^{3}, the base is 5 , the exponent is 3 , and $5^{3}=5 * 5 * 5=$ 125. Same as power. See Section 10.1.2: Powers and Exponents.
exponential notation A way of representing repeated multiplication by the same factor. For example, 2^{3} is exponential notation for $2 * 2 * 2$. The exponent 3 tells how many times the base 2 is used as a factor. See Section 10.1.2: Powers and Exponents.

expression (1) A mathematical phrase made up of numbers, variables, operation symbols, and/or grouping symbols. An expression does not contain relation symbols such as $=$, $>$, and \leq. (2) Either side of an equation or inequality.

$$
\begin{gathered}
2+3 \\
\sqrt{2 a b} \\
\pi r^{2}
\end{gathered}
$$

See Section 10.2: Reading and Writing Number Sentences $9 x-2$ and Section 17.2.2: Reading and Writing Open Sentences.
extended facts Variations of basic arithmetic facts involving multiples of 10,100 , and so on. For example, $30+70=100,40 * 5=200$, and $560 / 7=80$ are extended facts. See fact extensions and Section 16.3: Mental Arithmetic.
F
face (1) In Everyday Mathematics, a flat surface on a 3 -dimensional figure. Some special faces are called bases. (2) More generally, any 2-dimensional surface on a 3-dimensional figure. See Section 13.5: Space and 3-D Figures.

fact extensions Calculations with larger numbers using knowledge of basic arithmetic facts. For example, knowing the addition fact $5+8=13$ makes it easier to solve problems such as $50+80=?$ and $65+?=73$. Fact extensions apply to all four basic arithmetic operations. See extended facts and Section 16.3.3: Fact Practice.
fact family A set of related arithmetic facts linking two inverse operations. For example,

$$
\begin{array}{rlrl}
5+6 & =11 & 6+5 & =11 \\
11-5 & =6 & 11-6 & =5
\end{array}
$$

are an addition/subtraction fact family. Similarly,

$$
\begin{array}{rlrl}
5 * 7 & =35 & 7 * 5 & =35 \\
35 / 7 & =5 & 35 / 5 & =7
\end{array}
$$

are a multiplication/division fact family. Same as number family. See Section 16.3.3: Fact Practice. fact habits Same as fact power.
fact power In Everyday Mathematics, the ability to automatically recall basic arithmetic facts. Automatically knowing the facts is as important to arithmetic as knowing words by sight is to reading. Same as fact habits. See Section 16.3.2: Basic Facts and Fact Power.
Fact Triangle In Everyday Mathematics, a triangular flash card labeled with the numbers of a fact family that students can use to practice addition/subtraction and multiplication/division facts. The two 1-digit numbers and their sum or product (marked with a dot) appear in the corners of each triangle. See Section 1.3.1: Fact Families/Fact Triangles.

factor (1) Each of the two or more numbers in a product. For example, in $6 * 0.5,6$ and 0.5 are factors. Compare to factor of a counting number n .
(2) To represent a number as a product of factors.

For example, factor 21 by rewriting as $7 * 3$.
See Section 9.8.1: Prime and Composite Numbers: Divisibility.
factor of a counting number n A counting number whose product with some other counting number equals n. For example, 2 and 3 are factors of 6 because $2 * 3=6$. But 4 is not a factor of 6 because $4 * 1.5=6$, and 1.5 is not a counting number.
factor pair Two factors of a counting number n whose product is n. A number may have more than one factor pair. For example, the factor pairs for 18 are 1 and 18,2 and 9 , and 3 and 6 . See Section 9.8.1: Prime and Composite Numbers: Divisibility.
factor rainbow A way to show factor pairs in a list of all the factors of a number. A factor rainbow can be used to check whether a list of factors is correct.

A factor rainbow for 24
factor string A counting number written as a product of two or more of its counting-number factors other than 1 . The length of a factor string is the number of factors in the string. For example, $2 * 3 * 4$ is a factor string for 24 with length 3 .
By convention, $1 * 2 * 3 * 4$ is not a factor string for 24 because it contains the number 1.
factor tree A way to get the prime factorization of a counting number. Write the original number as a product of factors. Then write each of these factors as a product of factors, and continue until the factors are all prime numbers. A factor tree looks like an upside-down tree, with the root (the original number) at the top and the leaves (the factors) beneath it. See tree diagram and Section 9.8.1: Prime and Composite Numbers: Divisibility.

factorial (!) A product of a counting number and all smaller counting numbers. The symbol! means "factorial." For example, 3! is read "three factorial" and $3!=3 * 2 * 1=6$. Similarly, $4!=4 * 3 * 2 * 1=24$.
In symbols:
For any counting number n,

$$
n!=n *(n-1) *(n-2) * \ldots * 1 .
$$

By convention, $0!=1$.
facts table A chart showing arithmetic facts. An addition/subtraction facts table shows addition and subtraction facts. A multiplication/division facts table shows multiplication and division facts.
Fahrenheit A temperature scale on which pure water at sea level freezes at 32° and boils at 212°. The Fahrenheit scale is widely used in the United States but in few other places. Compare to Celsius. See degree Fahrenheit and Section 15.1.1: Temperature Scales.
fair Free from bias. Each side of a fair die or coin will land up about equally often. Each region of a fair spinner will be landed on in proportion to its area.
fair game A game in which every player has the same chance of winning. See Section 12.1.2: The Language of Chance.
false number sentence A number sentence that is not true. For example, $8=5+5$ is a false number sentence. Compare to true number sentence. See Section 10.2: Reading and Writing Number Sentences.
fathom A unit of length equal to 6 feet, or 2 yards. It is used mainly by people who work with boats and ships to measure depths underwater and lengths of cables. Same as arm span. See Section 14.1: Personal Measures.

Fathom
favorable outcome An outcome that satisfies the conditions of an event of interest. For example, suppose a 6 -sided die is rolled and the event of interest is "roll an even number." There are six possible outcomes: roll $1,2,3,4,5$, or 6 . Of these, 3 are favorable: roll 2,4 , or 6 . See equally likely outcomes and Section 12.1.2: The Language of Chance.
figurate numbers Numbers that can be illustrated by specific geometric patterns. Square numbers and triangular numbers are figurate numbers. See Section 17.1.2: Sequences.

flat In Everyday Mathematics, the base-10 block consisting of one hundred $1-\mathrm{cm}$ cubes. See Section 9.9.1: Base-10 Blocks.

> A flat
flat surface A surface contained entirely in one plane. See Section 13.4: Planes and Plane Figures and Section 13.5: Space and 3-D Figures.
flip An informal name for a reflection transformation. See Section 13.7.1: Reflections, Rotations, and Translations.
flowchart A diagram that shows a series of steps to complete a task. A typical flowchart is a network of frames and symbols connected by arrows that provides a guide for working through a problem step by step.
fluid ounce (fl oz) A U.S. customary unit of volume or capacity equal to $\frac{1}{16}$ of a pint, or about 29.573730 milliliters. Compare to ounce. See the Tables of Measures and Section 14.5: Volume (Capacity).
foot (ft) A U.S. customary unit of length equivalent to 12 inches, or $\frac{1}{3}$ of a yard. See the Tables of Measures and Section 14.3: Length.
formula A general rule for finding the value of something. A formula is usually an equation with quantities represented by letter variables. For example, a formula for distance traveled d at a rate r over a time t is $d=r * t$. The area A of a triangle with base length b and height h is given at right. See the Tables of Formulas and Section 17.2.1: Uses of Variables.

$A=\frac{1}{2} * b * h$
fraction (primary definition) A number in the form $\frac{a}{b}$ or a / b, where a and b are whole numbers and b is not 0 . A fraction may be used to name part of an object or part of a collection of objects, to compare two quantities, or to represent division. For example, $\frac{12}{6}$ might mean 12 eggs divided into 6 groups of 2 eggs each, a ratio of 12 to 6 , or 12 divided by 6. See Section 9.3: Fractions, Decimals, Percents, and Rational Numbers. fraction (other definitions) (1) A fraction that satisfies the previous definition and includes a unit in both the numerator and denominator. For example, the rates

$$
\frac{50 \text { miles }}{1 \text { gallon }} \text { and } \frac{40 \text { pages }}{10 \text { minutes }}
$$

are fractions. (2) A number written using a fraction bar, where the fraction bar is used to indicate division. For example,

$$
\frac{2.3}{6.5}, \frac{1 \frac{4}{5}}{12}, \text { and } \frac{\frac{3}{4}}{\frac{5}{8}} .
$$

fraction stick In Fifth and Sixth Grade Everyday Mathematics, a diagram used to represent simple fractions. See Section 9.9.4: Fraction-Stick Charts and Fraction Sticks.

fractional part Part of a whole. Fractions represent fractional parts of numbers, sets, or objects. See Section 9.3.2: Uses of Fractions.

Frames and Arrows In Everyday Mathematics, diagrams consisting of frames connected by arrows used to represent number sequences. Each frame contains a number, and each arrow represents a rule that determines which number goes in the next frame. There may be more than one rule, represented by different-color arrows. Frames-and-Arrows diagrams are also called chains. See Section 17.1.2: Sequences.

frequency (1) The number of times a value occurs in a set of data. See Section 12.2.3: Organizing and Displaying Data. (2) A number of repetitions per unit of time. For example, the vibrations per second in a sound wave.
frequency graph A graph showing how often each value occurs in a data set. See Section 12.2.3: Organizing and Displaying Data.

Colors in a Bag of Gumdrops

frequency table A table in which data are tallied and organized, often as a first step toward making a frequency graph. See Section 12.2.3: Organizing and Displaying Data.

Color	Number of Gumdrops
red	HH
green	$\mathrm{HHI} /$
yellow	$\mathrm{I} / / /$
orange	I / I
white	HI

fulcrum (1) The point on a mobile at which a rod is suspended. (2) The point or place around which a lever pivots. (3) The center support of a pan balance.

function A set of ordered pairs (x, y) in which each value of x is paired with exactly one value of y. A function is typically represented in a table, by points on a coordinate graph, or by a rule such as an equation. For example, for a function with the rule "Double," 1 is paired with 2,2 is paired with 4,3 is paired with 6 , and so on. In symbols, $y=2 * x$ or $y=2 x$. See Section 17.1.3: Functions.
function machine In Everyday Mathematics, an imaginary device that receives inputs and pairs them with outputs. For example, the function machine below pairs an input number with its double. See function and Section 17.1.3: Functions.

A function machine and function table
furlong A unit of length equal to 1 eighth of a mile. Furlongs are commonly used in horse racing.

gallon (gal) A U.S. customary unit of volume or capacity equal to 4 quarts. See the Tables of Measures and Section 14.5: Volume (Capacity). general pattern In Everyday Mathematics, a number model for a pattern or rule.
generate a random number To produce a random number by such methods as drawing a card without looking from a shuffled deck, rolling a fair die, and flicking a fair spinner. In Everyday Mathematics, random numbers are commonly generated in games. See Section 12.4.1: RandomNumber Generators.
genus In topology, the number of holes in a geometric shape. Shapes with the same genus are topologically equivalent. For example, a donut and a teacup are topologically equivalent because both are genus 1. See Section 13.11: Topology.

Genus 0

geoboard A manipulative 2-dimensional coordinate system made with nails or other posts at equallyspaced intervals relative to both axes. Children loop rubber bands around the posts to make polygons and other shapes.
geometric solid The surface or surfaces that make up a 3-dimensional figure such as a prism, pyramid, cylinder, cone, or sphere. Despite its name, a geometric solid is hollow; that is, it does not include the points in its interior. Informally, and in some dictionaries, a solid is defined as both the surface and its interior. See Section 13.5.1: "Solid" Figures.

Geometric solids
Geometry Template A Fourth through Sixth Grade Everyday Mathematics tool that includes a millimeter ruler, a ruler with $\frac{1}{16}$-inch intervals, half-circle and full-circle protractors, a percent circle, pattern-block shapes, and other geometric figures. The template can also be used as a compass (1). See Section 13.13.2: Pattern-Block and Geometry Templates.
girth The distance around a 3 -dimensional object.
Golden Ratio The ratio of the length of the long side to the length of the short side of a Golden Rectangle, approximately equal to 1.618 to 1. The Greek letter ϕ (phi) sometimes stands for the Golden Ratio. The Golden Ratio is an irrational number equal to $\frac{1+\sqrt{5}}{2}$.

See Section 9.3.3: Rates, Ratios, and Proportions.

Golden Rectangle A rectangle prized for its pleasing proportions in which the longer side is constructed with compass and straightedge from the shorter side. The ratio of these sides is the Golden Ratio, about 1.618 to 1. A 5 -inch by 3 -inch index card is roughly similar to a Golden Rectangle, as are the front faces of many ancient Greek buildings.

A Golden Rectangle
-gon A suffix meaning angle. For example, a hexagon is a plane figure with six angles.
gram (g) A metric unit of mass equal to $\frac{1}{1,000}$ of a kilogram. See the Tables of Measures and Section 14.6: Weight and Mass.
graph key An annotated list of the symbols used in a graph explaining how to read the graph. Compare to map legend.
greatest common factor (GCF) The largest factor that two or more counting numbers have in common. For example, the common factors of 24 and 36 are $1,2,3,4,6$, and 12 , and their greatest common factor is 12 .
great span The distance from the tip of the thumb to the tip of the little finger (pinkie), when the hand is stretched as far as possible. The great span averages about 9 inches for adults. Same as hand span. Compare to normal span and see Section 14.1: Personal Measures.

Great span
grouping symbols Parentheses (), brackets [], braces \{ \}, and similar symbols that define the order in which operations in an expression are to be done. Nested grouping symbols are groupings within groupings, and the innermost grouping is done first. For example, in $(3+4) *[(8+2) / 5]$, the group $(8+2)$ is nested within $[(8+2) / 5]$ and is done first. So $(3+4) *[(8+2) / 5]$ simplifies as follows:

$$
\begin{gathered}
(3+4) *[(8+2) / 5] \\
(3+4) *[10 / 5] \\
7 * 2
\end{gathered}
$$

$$
14
$$

See Section 10.2.1: Grouping Symbols.

H

hand span Same as great span.
height (1) A perpendicular segment from one side of a geometric figure to a parallel side or from a vertex to the opposite side. (2) The length of this segment. In Everyday Mathematics, same as altitude. See height of a parallelogram, height of a rectangle, height of a prism or cylinder, height of a pyramid or cone, height of a triangle, Section 13.4.2: Polygons (n-gons), Section 13.5.2: Polyhedrons, and Section 13.5.3: Solids with Curved Surfaces.

Heights/altitudes of 2-D figures are shown in blue.

Heights/altitudes of 3-D figures are shown in blue. height of a parallelogram (1) The length of the shortest line segment between a base of a parallelogram and the line containing the opposite side. The height is perpendicular to the base. (2) The line segment itself. See altitude, base of a parallelogram, and Section 13.4.2: Polygons (n-gons).

height of a prism or cylinder The length of the shortest line segment from a base of a prism or cylinder to the plane containing the opposite base. The height is perpendicular to the bases. (2) The line segment itself. See altitude, base of a prism or cylinder, Section 13.5.2: Polyhedrons, and Section 13.5.3: Solids with Curved Surfaces.

height of a pyramid or cone The length of the shortest line segment from the apex of a pyramid or cone to the plane containing the base. The height is perpendicular to the base. (2) The line segment itself. See altitude, base of a pyramid or cone, Section 13.5.2: Polyhedrons, and Section 13.5.3: Solids with Curved Surfaces.

height of a rectangle The length of a side perpendicular to a base of a rectangle. Same as altitude of a rectangle. See Section 13.4.2: Polygons (n-gons).
height of a triangle The length of the shortest segment from a vertex of a triangle to the line containing the opposite side. The height is perpendicular to the base. (2) The line segment itself. See altitude, base of a triangle, and Section 13.4.2: Polygons (n-gons).

The heights of the triangle are shown in blue.
hemisphere (1) Half of Earth's surface.
(2) Half of a sphere.
hepta- A prefix meaning seven.
heptagon A 7-sided polygon. See Section 13.4.2: Polygons (n-gons).

Heptagons
hexa- A prefix meaning six. hexagon A 6-sided polygon. See Section 13.4.2: Polygons (n-gons).

A hexagon
horizon Where the earth and sky appear to meet, if nothing is in the way. The horizon looks like a line when you look out to sea.
horizontal In a left-to-right orientation. Parallel to the horizon.
hypotenuse In a right triangle, the side opposite the right angle. See Section 13.4.2: Polygons (n-gons).

©
icon A small picture or diagram sometimes used to represent quantities. For example, an icon of a stadium might be used to represent 100,000 people on a pictograph. Icons are also used to represent functions or objects in computer operating systems and applications.
icosahedron A polyhedron with 20 faces. An icosahedron with equilateral triangle faces is one of the five regular polyhedrons. See Section 13.5.2: Polyhedrons.

An irregular icosahedron

A regular icosahedron
image A figure that is produced by a transformation of another figure called the preimage. See Section 13.7: Transformations.

improper fraction A fraction with a numerator that is greater than or equal to its denominator. For example, $\frac{4}{3}, \frac{5}{2}, \frac{4}{4}$, and $\frac{24}{12}$ are improper fractions. In Everyday Mathematics, improper fractions are sometimes called "top-heavy" fractions. inch (in.) A U.S. customary unit of length equal to $\frac{1}{12}$ of a foot and 2.54 centimeters. See the Tables of Measures and Section 14.3: Length. independent variable (1) A variable whose value does not rely on the values of other variables.
(2) The variable x in a function defined by the set of ordered pairs (x, y). Same as the input of the function. Compare to dependent variable. See Section 17.2.1: Uses of Variables.
index of locations A list of places together with a reference frame for locating them on a map. For example, "Billings, D3," means that Billings is in the rectangle to the right of D and above 3 on the map below. See Section 15.4.1: Map Coordinates.

Section of Map of Montana

indirect measurement The determination of heights, distances, and other quantities that cannot be measured directly.

Indirect measurement lets you calculate the height of the tree from the other measures.
inequality A number sentence with a relation symbol other than $=$, such as $>,<, \geq, \leq, \neq$, or \approx. See Section 9.7: Numeric Relations.
input (1) A number inserted into an imaginary function machine, which applies a rule to pair the input with an output. (2) The values for x in a function consisting of ordered pairs (x, y). See Section 17.1.3: Functions. (3) Numbers or other information entered into a calculator or computer. inscribed polygon A polygon whose vertices are all on the same circle.

An inscribed square
instance of a pattern Same as special case. integer A number in the set $\{\ldots,-4,-3,-2,-1$, $0,1,2,3,4, \ldots\}$. A whole number or its opposite, where 0 is its own opposite. Compare to rational number, irrational number, and real number.
See Section 9.4: Positive and Negative Numbers.
interest A charge for using someone else's money. Interest is usually a percentage of the amount borrowed.
interior of a figure (1) The set of all points in a plane bounded by a closed 2 -dimensional figure such as a polygon or circle. (2) The set of all points in space bounded by a closed 3-dimensional figure such as a polyhedron or sphere. The interior is usually not considered to be part of the figure. See Section 13.4: Planes and Plane Figures and Section 13.5: Space and 3-D Figures.
interpolate To estimate an unknown value of a function between known values. Graphs are useful tools for interpolation. See Section 17.1.3: Functions.
interquartile range (IQR) (1) The length of the interval between the lower and upper quartiles in a data set. (2) The interval itself. The middle half of the data is in the interquartile range. See Section 12.2.3: Organizing and Displaying Data. intersect To share a common point or points.

Intersecting lines and segments

interval (1) The set of all numbers between two numbers a and b, which may include one or both of a and b. (2) The points and their coordinates on a segment of a number line. The interval between 0 and 1 on a number line is the unit interval.

"in the black" Having a positive account balance; having more money than is owed.
"in the red" Having a negative account balance; owing more money than is available.
irrational numbers Numbers that cannot be written as fractions where both the numerator and denominator are integers and the denominator is not zero. For example, $\sqrt{2}$ and π are irrational numbers. An irrational number can be written as a nonterminating, nonrepeating decimal. For example, $\pi=3.141592653 \ldots$ continues forever without any known pattern. The number $1.10100100010000 \ldots$ is irrational because its pattern does not repeat. See Section 9.5:

Irrational Numbers.

isometry transformation A transformation in which the preimage and image are congruent. Reflections (flips), rotations (turns), and translations (slides) are isometry transformations, while a size change (stretch or shrink) is not. Although the size and shape of the figures in an isometry transformation are the same, their orientations may be different. From the Greek isometros meaning "of equal measure." See Section 13.7.1: Reflections, Rotations, and Translations.

A reflection (flip) isosceles trapezoid A trapezoid whose nonparallel sides are the same length. Pairs of base angles have the same measure. See Section 13.4.2: Polygons (n-gons).

An isosceles trapezoid
isosceles triangle A triangle with at least two sides equal in length. Angles opposite the congruent sides are congruent to each other. See Section 13.4.2: Polygons (n-gons).

Isosceles triangles

J

juxtapose To represent multiplication in an expression by placing factors side by side without a multiplication symbol. At least one factor is a variable. For example, $5 n$ means $5 * n$, and $a b$ means $a * b$. See Section 10.1.1: The Four Basic Arithmetic Operations.

K

key sequence The order in which calculator keys are pressed to perform a calculation. See Section 3.1.1: Calculators.
kilo- A prefix meaning 1 thousand.
kilogram A metric unit of mass equal to 1,000 grams. The international standard kilogram is a 39 mm diameter, 39 mm high cylinder of platinum and iridium kept in the International Bureau of Weights and Measures in Sèvres, France. A kilogram is about 2.2 pounds. See the Tables of Measures and Section 14.6: Weight and Mass.
kilometer A metric unit of length equal to 1,000 meters. A kilometer is about 0.62 mile. See the Tables of Measures and Section 14.3: Length.
kite A quadrilateral with two distinct pairs of adjacent sides of equal length. In Everyday Mathematics, the four sides cannot all have equal length; that is, a rhombus is not a kite. The diagonals of a kite are perpendicular. See Section 13.4.2: Polygons (n-gons).

A kite
label (1) A descriptive word or phrase used to put a number or numbers in context. Labels encourage students to associate numbers with real objects. Flags, snowballs, and scary monsters are examples of labels. See Section 10.3: Use Classes and Situation Diagrams. (2) In a spreadsheet or graph, words or numbers providing information such as the title of the spreadsheet, the heading for a row or column, or the variable on an axis.
landmark In Everyday Mathematics, a notable feature of a data set. Landmarks include the median, mode, mean, maximum, minimum, and range. See Section 12.2.4: Data Analysis.
latitude A degree measure locating a place on Earth north or south of the equator. A location at 0° latitude is on the equator. The North Pole is at 90° north latitude, and the South Pole is at 90° south latitude. Compare to longitude. See lines of latitude and Section 15.4.4: The Global Grid System.
lattice multiplication A very old algorithm for multiplying multidigit numbers that requires only basic multiplication facts and addition of 1-digit numbers in a lattice diagram. See Section 11.2.3: Multiplication Algorithms.
least common denominator (LCD) The least common multiple of the denominators of every fraction in a given collection. For example, the least common denominator of $\frac{1}{2}, \frac{4}{5}$, and $\frac{3}{8}$ is 40. See Section 11.3: Algorithms for Fractions.
least common multiple (LCM) The smallest number that is a multiple of two or more given numbers. For example, common multiples of 6 and 8 include 24,48 , and 72 . The least common multiple of 6 and 8 is 24 . See Section 11.3: Algorithms for Fractions.
left-to-right subtraction A subtraction algorithm that works from the left decimal place to the right in several steps. For example, to solve $94-57$, first calculate $94-50$ to obtain 44 and then calculate $44-7$ to obtain 37 . The method is especially suited to mental arithmetic. See Section 11.2.2: Subtraction Algorithms.
leg of a right triangle Either side of the right angle in a right triangle; a side that is not the hypotenuse. See Section 13.4.2: Polygons (n-gons).

length The distance between two points on a 1 -dimensional figure. For example, the figure might be a line segment, an arc, or a curve on a map modeling a hiking path. Length is measured in units such as inches, kilometers, and miles. See Section 14.3: Length.
length of a factor string The number of factors in a factor string.
length of a rectangle Typically, but not necessarily, the longer dimension of a rectangle.
letter-number pair An ordered pair in which one of the coordinates is a letter. Often used to locate places on maps. See Section 15.4.1: Map Coordinates.
like fractions Fractions with equal denominators.
like terms In an algebraic expression, either the constant terms or any terms that contain the same variable(s) raised to the same power(s). For example, $4 y$ and $7 y$ are like terms in the expression $4 y+7 y-z$. See combine like terms and Section 17.2.3: Simplifying Expressions.
line In Everyday Mathematics, a 1-dimensional straight path that extends forever in opposite directions. A line is named using two points on it or with a single, italicized lower-case letter such as l. In formal Euclidean geometry, line is an undefined geometric term. See Section 13.3: Lines, Segments, and Rays.

line graph A graph in which data points are connected by line segments. Same as broken-line graph. See Section 12.2.3: Organizing and Displaying Data.
line of reflection (mirror line) (1) In Everyday Mathematics, a line halfway between a figure and its reflection image in a plane. (2) The perpendicular bisector of the line segments connecting points on a figure with their corresponding points on its reflection image. Compare to line of symmetry. See Section 13.7.1: Reflections, Rotations, and Translations.
line of symmetry A line that divides a figure into two parts that are reflection images of each other. A figure may have zero, one, or more lines of symmetry. For example, the numeral 2 has no lines of symmetry, a square has four lines of symmetry, and a circle has infinitely many lines of symmetry. Also called a symmetry line. See Section 13.8.1: Line Symmetry.

Lines of symmetry are shown in blue.
line plot A sketch of data in which check marks, Xs , or other symbols above a labeled line show the frequency of each value. See Section 12.2.3: Organizing and Displaying Data.

line segment A part of a line between and including two points called endpoints of the segment. Same as segment. A line segment is often named by its endpoints. See Section 13.3: Lines, Segments, and Rays.

Segment $E F$ or $\overline{E F}$
line symmetry A figure
has line symmetry if a line can be drawn that divides it into two parts that are reflection images of each other. See line of symmetry and Section 13.7.1:
Reflections, Rotations, and Translations.
lines of latitude Lines of constant latitude drawn on a 2-dimensional map or circles of constant latitude drawn on a globe. Lines of latitude are also called parallels because they are parallel to the equator and to each other. On a globe, latitude lines (circles) are intersections of planes parallel to the plane through the equator. Compare to lines of longitude. See Section 15.4.4: The Global Grid System.

Point A is located at $30^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}$.
lines of longitude Lines of constant longitude drawn on a 2 -dimensional map or semicircles of constant longitude drawn on a globe connecting the North and South Poles. Lines of longitude are also called meridians. Compare to lines of latitude. See Section 15.4.4: The Global Grid System.
liter (L) A metric unit of volume or capacity equal to the volume of a cube with $10-\mathrm{cm}$-long edges. $1 \mathrm{~L}=1,000 \mathrm{~mL}=1,000 \mathrm{~cm}^{3}$. A liter is a little larger than a quart. See the Tables of Measures and Section 14.5: Volume (Capacity).
long In Everyday Mathematics, the base-10 block consisting of ten $1-\mathrm{cm}$ cubes. Sometimes called a rod. See Section 9.9.1: Base-10 Blocks.
long-term memory Memory in a calculator used by keys with an M on them, such as $M-$ and $M+$. Numbers in long-term memory are not affected by calculations with keys without an M, which use short-term memory. See Section 3.1.1: Calculators.
longitude A degree measure locating a place on Earth east or west of the prime meridian. A location at 0° longitude is on the prime meridian. A location at 180° east or west longitude is on or near the international date line, which is based on the imaginary semicircle opposite the prime meridian. Compare to latitude. See lines of longitude and Section 15.4.4: The Global Grid System.
lower quartile In Everyday Mathematics, in an ordered data set, the middle value of the data below the median. Data values at the median are not included when finding the lower quartile. Compare to upper quartile. See Section 12.2.3: Organizing and Displaying Data.
lowest terms of a fraction Same as simplest form of a fraction.

m

magnitude estimate A rough estimate of whether a number is in the tens, hundreds, thousands, or other powers of 10 . For example, the U.S. national debt per person is in the tens of thousands of dollars. In Everyday Mathematics, students give magnitude estimates for problems such as How many dimes are in $\$ 200$? or How many halves are in 30? Same as order-of-magnitude estimate. See Section 16.1.3: Estimates in Calculations. map direction symbol A symbol on a map that identifies north, south, east, and west. Sometimes only north is indicated. See Section 15.4: Maps.

map legend (map key) A diagram that explains the symbols, markings, and colors on a map.
map scale The ratio of a distance on a map, globe, or drawing to an actual distance. For example, 1 inch on a map might correspond to 1 real-world mile. A map scale may be shown on a segment of a number line, given as a ratio of distances such as $\frac{1}{63,360}$ or $1: 63,360$ when an inch represents a mile, or by an informal use of the = symbol such as 1 inch $=1$ mile. See Section 15.4.2: Map and Model Scales.

mass A measure of the amount of matter in an object. Mass is not affected by gravity, so it is the same on Earth, the moon, or anywhere else in space. Mass is usually measured in grams, kilograms, and other metric units. Compare to weight. See Section 14.6: Weight and Mass.
Math Boxes In Everyday Mathematics, a collection of problems to practice skills. Math Boxes for each lesson are in the Math Journal. See Section 1.2.3: Math Boxes.
Math Journal In Everyday Mathematics, a place for students to record their mathematical discoveries and experiences. Journal pages give models for conceptual understanding, problems to solve, and directions for individual and small-group activities.
Math Master In Everyday Mathematics, a page ready for duplicating. Most masters support students in carrying out suggested activities. Some masters are used more than once during the school year.
Math Message In Everyday Mathematics, an introductory activity to the day's lesson that students complete before the lesson starts. Messages may include problems to solve, directions to follow, sentences to complete or correct, review exercises, or reading assignments. See Section 1.2.4: Math Messages.
maximum The largest amount; the greatest number in a set of data. Compare to minimum. See Section 12.2.4: Data Analysis.
mean For a set of numbers, their sum divided by the number of numbers. Often called the average value of the set. Compare to other data landmarks median and mode. See Section 12.2.4: Data Analysis.
mean absolute deviation (m.a.d.) In a data set, the average distance between individual data values and the mean of those values. See Section 12.2.3: Organizing and Displaying Data.
measurement division A term for the type of division used to solve an equal-grouping story such as How many tables seating 4 people each are needed for 52 people? Same as quotitive division. Compare to partitive division. See Section 10.3.2: Multiplication and Division Use Classes.
measurement unit The reference unit used when measuring. Examples of basic units include inches for length, grams for mass or weight, cubic inches for volume or capacity, seconds for elapsed time, and degrees Celsius for change of temperature. Compound units include square centimeters for area and miles per hour for speed. See Section 14.2: Measurement Systems. median The middle value in a set of data when the data are listed in order from smallest to largest or vice versa. If there is an even number of data points, the median is the mean of the two middle values. Compare to other data landmarks mean and mode. See Section 12.2.4: Data Analysis. memory in a calculator Where numbers are stored in a calculator for use in later calculations. Most calculators have both a short-term memory and a long-term memory. See Section 3.1.1: Calculators. mental arithmetic Computation done by people "in their heads," either in whole or in part. In Everyday Mathematics, students learn a variety of mental-calculation strategies to develop automatic recall of basic facts and fact power. See Section 16.3: Mental Arithmetic. Mental Math and Reflexes In Everyday Mathematics, exercises at three levels of difficulty at the beginning of lessons for students to get ready to think about math, warm-up skills they need for the lesson, continually build mental-arithmetic skills, and help you assess individual strengths and weaknesses. See Section 1.2.5: Mental Math and Reflexes. meridian bar A device on a globe that shows degrees of latitude north and south of the equator. It's called a meridian bar because it is in the same orientation as meridians.
meridians Same as lines of longitude.
meter (m) The basic metric unit of length from which other metric units of length are derived. Originally, the meter was defined as $\frac{1}{10,000,000}$ of the distance from the North Pole to the equator along a meridian passing through Paris. From 1960 to 1983, the meter was redefined as $1,630,763.73$ wavelengths of orange-red light from the element krypton. Today, the meter is defined as the distance light travels in a vacuum in $\frac{1}{299,792,458}$ second. One meter is equal to 10 decimeters, 100 centimeters, or 1,000 millimeters. See Section 14.3: Length.
metric system A measurement system based on the base-ten (decimal) numeration system and used in most countries and by virtually all scientists around the world. Units for length include millimeter, centimeter, meter, and kilometer; units for mass and weight include gram and kilogram; units for volume and capacity include milliliter and liter; and the unit for temperature change is degrees Celsius. See the Tables of Measures and Section 14.2.2: Metric System. middle value Same as median.
midpoint A point
halfway between two
other points. The midpoint of a line segment is the point halfway between

Length of $\overline{A B}=$ length of $\overline{B C}$ the endpoints.
mile (mi) A U.S. customary unit of length equal to 5,280 feet, or 1,760 yards. A mile is about 1,609 meters.
milli- A prefix meaning 1 thousandth.
milliliter (mL) A metric unit of volume or capacity equal to $\frac{1}{1,000}$ of a liter, or 1 cubic centimeter. See Section 14.5: Volume (Capacity).
millimeter (mm) A metric unit of length equal to $\frac{1}{10}$ of a centimeter, or $\frac{1}{1,000}$ of a meter. See Section 14.3: Length.
millisecond (ms or msec) A unit of time equal to $\frac{1}{1,000}$ of a second.
minimum The smallest amount; the smallest number in a set of data. Compare to maximum. See Section 12.2.4: Data Analysis.
minuend In subtraction, the number from which another number is subtracted. For example, in $19-5=14$, the minuend is 19 . Compare to subtrahend.
mirror image Same as reflection image.
mixed number A number that is written using both a whole number and a fraction. For example, $2 \frac{1}{4}$ is a mixed number equal to $2+\frac{1}{4}$.
Möbius strip (Möbius band) A 3-dimensional figure with only one side and one edge, named for the
German mathematician August Ferdinand
 Möbius (1790-1868).
modal Of or relating to the mode.
mode The value or values that occur most often in a set of data. Compare to other landmarks median and mean. See Section 12.2.4: Data Analysis.
modified repeated addition A multiplication algorithm based on adding a to itself b times to find $a * b$. One of the factors is separated into parts and the partial products of the other factor and those parts are then added. For example, to compute $67 * 53$, think of 10 [67s] as 670 and add five of them to get $50 * 67$. Then add the remaining $3[67 \mathrm{~s}]$ to the result. See Section 11.2.3: Multiplication Algorithms.
modified U.S. traditional multiplication A multiplication algorithm in which the traditional algorithm is enhanced by introducing 0 s into the blanks to maintain the logic of the process and to help avoid sloppy alignment of partial products. See Section 11.2.3: Multiplication Algorithms. multiple of a number n (1) A product of n and a counting number. For example, the multiples of 7 are 7, 14, 21, 28, ... (2) A product of n and an integer. For example, the multiples of 7 are $\ldots,-21,-14,-7,0,7,14,21, \ldots$.
multiples of equal groups A multiple of a rate in an equal-grouping situation. For example, How many balloons are there altogether in 6 packages with 20 balloons per package? is a multiples-of-equal-groups problem. See Section 10.3.2: Multiplication and Division Use Classes.
multiplication counting principle A way of determining the total number of possible outcomes for two or more separate choices. For example, suppose you roll a typical die and then flip a coin. There are 6 choices for which number on the die lands up ($1,2,3,4,5$, or 6) and 2 choices for which side of the coin lands up (heads H or tails $T)$. So there are $6 * 2=12$ possible outcomes all together: $(1, H),(1, T),(2, H),(2, T),(3, H)$, $(3, T),(4, H),(4, T),(5, H)(5, T),(6, H),(6, T)$. multiplication/division diagram A diagram used in Everyday Mathematics to model situations in which a total number is made up of equal-size groups. The diagram contains a number of groups, a number in each group, and a total number. Also called a multiplication diagram for short. See situation diagram and Section 10.3.2: Multiplication and Division Use Classes.

rows	chairs per row	total chairs
15	25	$?$

A multiplication/division diagram
multiplication/division use class In Everyday Mathematics, a situation in which multiplication or division is used. These include equal grouping/ sharing, arrays and area, rates and ratio, scaling, and Cartesian product situations. See Section 10.3.2: Multiplication and Division Use Classes. multiplication fact The product of two 1-digit numbers, such as $6 * 7=42$. See arithmetic facts and Section 16.3.2: Basic Facts and Fact Power.
Multiplication Property of -1 A property of multiplication that says multiplying any number by -1 gives the opposite of a number. For example, $-1 * 5=-5$ and $-1 *-3=-(-3)=3$. In symbols:

For any number $a,-1 * a=-a$.
Some calculators apply this property with a + key that toggles between a positive and negative value in the display.
multiplication symbols The number a multiplied by the number b is written in a variety of ways. Many mathematics textbooks and Second and Third Grade Everyday Mathematics use \times as in $a \times b$. Beginning in fourth grade, Everyday Mathematics uses * as in $a * b$. Other common symbols are a dot as in $a \bullet b$ and by juxtaposition as in $a b$, which is common in formulas and in algebra courses. See Section 10.1.1: The Four Basic Arithmetic Operations. multiplicative inverses Same as reciprocals.

N

name-collection box In Everyday Mathematics, a diagram that is used for collecting equivalent names for a number. See Section 9.9.3: NameCollection Boxes.

25
$37-12$
$20+5$
HHt AHt AHt AHt AHI
twenty-five
veinticinco

name of a tessellation A numerical description of a tessellation listing the number of sides of the polygons that meet at each vertex point, in order from the smallest.
See Section 13.10.1:
Classifying Tessellations.

A 4.4.4.4 tessellation

A 3.3.4.3.4 tessellation
natural numbers In Everyday Mathematics, same as counting numbers.
negative numbers Numbers less than 0 ; the opposites of the positive numbers, commonly written as a positive number preceded by a - . Negative numbers are plotted left of 0 on a horizontal number line or below 0 on a vertical number line. See Section 9.4: Positive and Negative Numbers.
negative power of 10 A number that can be written in the form 10^{-a}, which is shorthand for $\frac{1}{10^{a}}$ where a is a counting number. For example, $10^{-2}=\frac{1}{10^{2}}$. Negative powers of 10 can be written as fractions or in standard decimal notation: $10^{-2}=\frac{1}{10^{2}}=\frac{1}{100}=0.01$. Compare to positive power of 10. See Section 10.1.2: Powers and Exponents.
negative rational numbers Rational numbers less than 0 ; the opposites of the positive rational numbers. For example, $-24,-2.333 \ldots$, and $-\frac{5}{8}$ are negative rational numbers. See Section 9.4: Positive and Negative Numbers.
nested parentheses Parentheses within parentheses in an expression. Expressions are evaluated from within the innermost parentheses outward. See grouping symbols for an example and Section 10.2.1: Grouping Symbols.
net score The final score of a turn or game after all calculations have been completed.
net weight The weight of the contents of a container, excluding the weight of the container. n-gon Same as polygon, where n is the number of sides. Polygons that do not have special names like squares and pentagons are usually named using n-gon notation, such as 13 -gon or 100 -gon.
nona- A prefix meaning nine.
nonagon A 9-sided polygon.
nonconvex polygon Same as concave polygon.
normal span The distance from the end of the thumb to the end of the index (first) finger of an outstretched hand. For estimating lengths, many people can adjust this distance to approximately 6 inches or 15 centimeters. Same as span.
Compare to great span. See Section 14.1: Personal Measures.
n-to-1 ratio A ratio of a number to 1 . Every ratio $a: b$ can be converted to an n-to- 1 ratio by dividing a by b. For example, a ratio of 3 to 2 is a ratio of $3 / 2=1.5$ or a 1.5 -to- 1 ratio.
number-and-word notation A notation consisting of the significant digits of a number and words for the place value. For example, 27 billion is number-and-word notation for $27,000,000,000$.
number family Same as fact family.
number grid In Everyday Mathematics, a table in which consecutive numbers are arranged in rows, usually 10 columns per row. A move from one number to the next within a row is a change of 1 ; a move from one number to the next within a column is a change of 10 . See Section 9.9.2: Number Grids, Scrolls, and Lines.

-9	-8	-7	-6	-5	-4	-3	-2	-1	0
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

A number grid
number-grid puzzle In Everyday Mathematics, a piece of a number grid in which some, but not all, of the numbers are missing. Students use numbergrid puzzles to practice place-value concepts.

A number-grid puzzle
number line A line on which points are indicated by tick marks that are usually at regularly spaced intervals from a starting point called the origin, the zero point, or simply 0 . Numbers are associated with the tick marks on a scale defined by the unit interval from 0 to 1 . Every real number locates a point on the line, and every point corresponds to a real number. See Section 9.9.2: Number Grids, Scrolls, and Lines.

number model A number sentence, expression, or other representation that models a number story or situation. For example, the story Sally had $\$ 5$, and then she earned $\$ 8$ can be modeled as the number sentence $5+8=13$, as the expression $5+8$, or by 5

$$
\begin{array}{r}
+\quad 8 \\
\hline 13
\end{array}
$$

See Section 10.2: Reading and Writing Number Sentences and Section 18.3: Mathematical Modeling.
number scroll In Everyday Mathematics, a series of number grids taped together. See Section 9.9.2: Number Grids, Scrolls, and Lines.

A number scroll
number sentence Two expressions with a relation symbol.

$$
\begin{array}{ll}
5+5=10 & 16 \leq a * b \\
2-?=8 & a^{2}+b^{2}=c^{2}
\end{array}
$$

Number sentences
number sequence A list of numbers, often generated by a rule. In Everyday Mathematics, students explore number sequences using Frames-andArrows diagrams. See Section 17.1.2: Sequences.

$$
\begin{array}{ll}
1,2,3,4,5, \ldots & 1,4,9,16,25, \ldots \\
1,2,1,2,1, \ldots & 1,3,5,7,9, \ldots
\end{array}
$$

Number sequences
number story A story that involves numbers and one or more explicit or implicit questions. For example, I have 7 crayons in my desk. Carrie gave me 8 more crayons. Now I have 15 crayons in all is a number story. See Section 18.4.1: Number Stories.
numeral A word, symbol, or figure that represents a number. For example, six, VI, $\mathrm{HH} /$, and 6 are all numerals that represent the same number. numeration A method of numbering or of reading and writing numbers. In Everyday Mathematics, numeration activities include counting, writing numbers, identifying equivalent names for numbers in name-collection boxes, exchanging coins such as 5 pennies for 1 nickel, and renaming numbers in computation.
numerator The dividend a in a fraction $\frac{a}{b}$ or a / b. In a part-whole fraction, in which the whole (the ONE or unit whole) is divided into a number of equal parts, the numerator is the number of equal parts being considered. Compare to denominator. See Section 9.3.1: Fraction and Decimal Notation.

0

obtuse angle An angle with measure between 90° and 180°. See Section 13.4.1: Angles and Rotations.

obtuse triangle A triangle with an angle measuring more than 90°. See Section 13.4.2: Polygons (n-gons).

octa- A prefix meaning eight.
octagon An 8-sided polygon. See Section 13.4.2: Polygons (n-gons).

Octagons
octahedron A polyhedron with 8 faces. An octahedron with 8 equilateral triangle faces is one of the five regular polyhedrons. See Section 13.5.2: Polyhedrons.
odd number A counting number that is not divisible by 2. Compare to even number. See Section 17.1.1: Number Patterns.

ONE In Everyday Mathematics, same as whole or unit whole.

1-dimensional (1-D) coordinate system A reference frame in which any point on a 1-dimensional figure can be located with one coordinate relative to the origin of a number line. Compare to 2 -dimensional and 3-dimensional coordinate systems. See Section 15.3.1: 1-Dimensional Coordinate Systems.
1-dimensional (1-D) figure A figure such as a line segment, arc, or part of a curve that has length but no width or depth. Compare to 2 - and 3-dimensional figures. See Section 13.1: Dimension. open proportion A proportion with one or more variables. An open proportion is an open sentence and is neither true nor false. For example, $\frac{2}{3}=\frac{a}{5}$ and $\frac{z}{15}=\frac{y}{3}$ are open proportions. See Section 17.2.4: Solving Open Sentences.
open sentence A number sentence with one or more variables. An open sentence is neither true nor false. For example, $9+_{-}=15, ?-24<10$, and $7=x+y$ are open sentences. See Section 17.2.2: Reading and Writing Open Sentences.
operation A rule performed on one or more mathematical objects such as numbers, variables, or expressions to produce another mathematical object. Addition, subtraction, multiplication, and division are the four basic arithmetic operations. Taking a square root, squaring a number, and multiplying both sides of an equation by the same number are also operations. In Everyday Mathematics, students learn about many operations along with several procedures, or algorithms, for carrying them out. See Chapter 10: Arithmetic Operations.
operation symbol A symbol used in expressions and number sentences to stand for a particular mathematical operation. Symbols for common arithmetic operations are:

addition	+
subtraction	-
multiplication	$\times, *, \bullet$
division	$\div, /$
powering	\wedge

See Section 10.1: Arithmetic Symbols.
OPP(n) In Everyday Mathematics, same as opposite of a number n.
opposite angle in a triangle The angle opposite a side of a triangle that is not one of the sides of the angle.

Angle C is opposite side $A B$.
opposite angles Same as vertical angles. opposite angles in a quadrilateral Two angles in a quadrilateral that do not share a side.

Angles A and C; angles B and D are pairs of opposite angles.
opposite-change rule for addition An addition algorithm in which a number is added to one addend and subtracted from the other addend. Compare to same-change rule for subtraction. See Section 11.2.1: Addition Algorithms.
opposite of a number n A number that is the same distance from 0 on a number line as n, but on the opposite side of zero. In symbols, the opposite of a number n is -n, and, in Everyday Mathematics, $\operatorname{OPP}(n)$. If n is a negative number, $-n$ is a positive number. For example, the opposite of -5 is 5 . The sum of a number n and its opposite is zero; $n+-n=0$. Same as additive inverse. See Section 9.4: Positive and Negative Numbers. opposite side in a triangle The side opposite an angle of a triangle that is not a side of the angle. opposite sides in a quadrilateral Two sides in a quadrilateral that do not share a vertex.

Sides $A B$ and $D C$; sides $B C$ and $A D$ are pairs of opposite sides.
order-of-magnitude estimate Same as magnitude estimate.
order-of-magnitude increase A 10-times change in a value. Sometimes simply called a magnitude increase. See Section 10.1.2: Powers and Exponents and Section 16.1.2: Extreme Numbers. order of operations Rules that tell the order in which operations in an expression should be carried out. The conventional order of operations is:

1. Do operations inside grouping symbols. Work from the innermost set of grouping symbols outward. Inside grouping symbols, follow Rules 2-4.
2. Calculate all expressions with exponents.
3. Multiply and divide in order from left to right.
4. Add and subtract in order from left to right.

For example:

$$
\begin{aligned}
5^{2}+(3 * 4-2) / 5 & =5^{2}+(12-2) / 5 \\
& =5^{2}+10 / 5 \\
& =25+10 / 5 \\
& =25+2 \\
& =27
\end{aligned}
$$

Same as algebraic order of operations. See Section 10.2.3: The Order of Operations.
order of rotation symmetry The number of times a rotation image of a figure coincides with the figure before completing a 360° rotation. See Section 13.8.2: Rotation and Point Symmetries.

A figure with order 5 rotation symmetry ordered pair (1) Two numbers, or coordinates, used to locate a point on a rectangular coordinate grid. The first coordinate x gives the position along the horizontal axis of the grid, and the second coordinate y gives the position along the vertical axis. The pair is written (x, y). See Section 15.3.2: 2- and 3-Dimensional Coordinate Systems. (2) Any pair of objects or numbers in a particular order, as in letter-number spreadsheet cell names or map coordinates. See Section 15.4.1: Map Coordinates.

orders of magnitude Positive powers of 10 including $10,100,1,000$, and so on. See order-of-magnitude increase, Section 10.1.2: Powers and Exponents and Section 16.1.2: Extreme Numbers.
ordinal number The position or order of something in a sequence, such as first, third, or tenth.
Ordinal numbers are commonly used in dates, as in "May fifth" instead of "May five." See Section 9.2.2: Ordinal Numbers.
origin The zero point in a coordinate system. On a number line, the origin is the point at 0 . On a coordinate grid, the origin is the point $(0,0)$
where the two axes intersect. See Section 15.3: Coordinate Systems.

The points at 0 and $(0,0)$ are origins.
ounce (oz) A U.S. customary unit of weight equal to $\frac{1}{16}$ of a pound or about 28.35 grams. Compare to fluid ounce. See the Tables of Measures and Section 14.6: Weight and Mass.
outcome A possible result of a chance experiment or situation. For example, HEADS and TAILS are the two possible outcomes of flipping a coin. See event, equally likely outcomes, and Section 12.1.2: The Language of Chance.
outlier A value far from most of the others in a data set. Commonly, outliers are much larger or smaller than other values. See Section 12.2.4: Data Analysis.
output (1) A number paired to an input by an imaginary function machine applying a rule. (2) The values for y in a function consisting of ordered pairs (x, y). See Section 17.1.3: Functions. (3) Numbers or other information displayed by calculator or computer.

P

pan balance A device used to weigh objects or compare their weights. See Section 14.11.4: Scales and Balances.
pan-balance problems In Fifth and Sixth Grade Everyday Mathematics, problems in which pan balances represent linear equations. One weight (real or symbolic) represents the variable, and another weight represents a single unit. Exchanges that keep the pans balanced correspond to mathematical operations on both sides of an equation until, eventually, a single variable weight balances with a number of units representing the solution. See Section 17.2.4:

Solving Open Sentences.

A pan-balance problem
parabola (1) The curve formed by the intersection of a right circular cone and a plane parallel to the lateral edge of the cone. (2) In a plane, the set of points that are the same distance from a line and a point not on the line.

parallel lines Lines in a plane that never meet. Two parallel lines are always the same distance apart. Line segments or rays on parallel lines are parallel to each other. See Section 13.6.1:
Perpendicular and Parallel.

parallel planes Planes in space that never meet. Two parallel planes are always the same distance apart. A figure in one plane is parallel to the other plane. Polygons in one plane are said to be parallel to polygons in the other plane. However, 1-dimensional shapes such as lines, segments, and rays in one plane are not necessarily parallel to 1-dimensional shapes in a parallel plane. See skew lines and Section 13.6.1: Perpendicular and Parallel.
parallelogram A quadrilateral with two pairs of parallel sides. Opposite sides of a parallelogram have the same length and opposite angles have the same measure. All rectangles are parallelograms, but not all parallelograms are rectangles because parallelograms do not necessarily have right angles. See Section 13.4.2: Polygons (n-gons).

Parallelograms
parallels Same as lines of latitude.
parentheses See grouping symbols.
partial-differences subtraction A subtraction algorithm in which separate differences are computed for each place value of the numbers and then added to get a final difference. See Section 11.2.2: Subtraction Algorithms.
partial-products multiplication A multiplication algorithm in which partial products are computed by multiplying the value of each digit in one factor by the value of each digit in the other factor. The final product is the sum of the partial products. See Section 11.2.3: Multiplication Algorithms.
partial-quotients division A division algorithm in which a partial quotient is computed in each of several steps. The final quotient is the sum of the partial quotients. See Section 11.2.4: Division Algorithms.
partial-sums addition An addition algorithm in which separate sums are computed for each place value of the numbers and then added to get a final sum. See Section 11.2.1: Addition Algorithms. partitive division A term for the type of division used to solve an equal-sharing story such as If $\$ 10$ is shared by 4 people, how much does each person get? Compare to measurement division. See Section 10.3.2: Multiplication and Division Use Classes.
parts-and-total diagram In Everyday Mathematics, a diagram used to model problems in which two or more quantities (parts) are combined to get a total quantity. See situation diagram and Section 10.3.1: Addition and Subtraction Use Classes.

Parts-and-total diagrams for $13=8+$?
parts-and-total story A number story in which a whole is made up of distinct parts. For example, There are 15 girls and 12 boys in Mrs. Dorn's class. How many students are there in all? is a parts-and-total story. In other stories, the total and one or more parts may be known and the last part unknown. See Section 10.3.1: Addition and Subtraction Use Classes.
part-to-part ratio A ratio that compares a part of a whole to another part of the same whole. For example, There are 8 boys for every 12 girls is a part-to-part ratio with a whole of 20 students. Compare to part-to-whole ratio. See Section 10.3.2: Multiplication and Division Use Classes. part-to-whole ratio A ratio that compares a part of a whole to the whole. For example, 8 out of 20 students are boys and 12 out of 20 students are girls are part-to-whole ratios. Compare to part-topart ratio. See Section 10.3.2: Multiplication and Division Use Classes.
part-whole fraction A fraction that describes dividing an object or collection into equal parts. In Everyday Mathematics, the object or collection is called the whole, or the ONE, and is the denominator of the fraction. The numerator is the number of parts of the whole. For example, in the situation Padma ate $\frac{3}{5}$ of the pizza, the ONE is 5 pieces of pizza (a whole pizza divided into 5 parts) and Padma ate 3 of the 5 parts. See Section 9.3.2: Uses of Fractions.
pattern A repetitive order or arrangement. In Everyday Mathematics, students mainly explore visual and number patterns in which elements are arranged so that what comes next can be predicted. Compare to general pattern. See Section 17.1: Patterns, Sequences, and Functions. penta- A prefix meaning five.
pentagon A 5-sided polygon. See Section 13.4.2: Polygons (n-gons).

Pentagons
per For each, as in ten chairs per row or six tickets per family.
per capita For each person. Often used to describe an average of a data set, as in The per-capita debt for U.S. citizens in July 2005 was $\$ 26,451.95$.
percent (\%) Per hundred, for each hundred, or out of a hundred. $1 \%=\frac{1}{100}=0.01$. For example, 48% of the students in the school are boys means that, on average, 48 of every 100 students in the school are boys. See Section 9.3.5: Percents.
Percent Circle A tool on the Geometry Template that is used to measure and draw figures that involve percents, such as circle graphs. See Section 14.11.2: Protractors and the Percent Circle.

perfect number A counting number that equals the sum of its proper factors. For example, 6 is a perfect number because the sum of its proper factors is $1+2+3=6$. Compare to abundant number and deficient number. See Section 9.8.2: Perfect, Deficient, and Abundant Numbers.
perimeter The distance around the boundary of a 2 -dimensional figure. The perimeter of a circle is called its circumference. A formula for the perimeter P of a rectangle with length l and width w is $P=2 *(l+w)$. Perimeter comes from the Greek words for "around measure." See the Tables of Formulas and Section 14.3: Length. perpendicular (\perp) Two lines or two planes that intersect at right angles. Line segments or rays that lie on perpendicular lines are perpendicular to each other. The symbol \perp means "is perpendicular to." See Section 13.6.1: Perpendicular and Parallel.

perpendicular bisector A line, ray, or segment that bisects a line segment at a right angle. See Section 13.6.1: Perpendicular and Parallel and Section 13.13.1: Compass-and-Straightedge Constructions.

Construction of a perpendicular bisector of $\overline{A B}$
perpetual calendar A table that can be used to determine the correct day of the week for any date in a wide range of years.
personal-measurement reference A convenient approximation for a standard unit of measurement. For example, many people have thumbs that are approximately one inch wide. See Section 14.1: Personal Measures.
perspective drawing A drawing that realistically represents a 3 -dimensional object on a 2-dimensional surface. See Section 13.5.4: Connecting 2-D and 3-D.
per-unit rate A rate with 1 unit of something in the denominator. Per-unit rates tell how many of one thing there are for 1 unit of another thing. For example, 3 dollars per gallon, 12 miles per hour, and 1.6 children per family are per-unit rates. pi (π) The ratio of the circumference of a circle to its diameter. Pi is also the ratio of the area of a circle to the square of its radius. Pi is the same for every circle and is an irrational number that is approximately equal to 3.14 . The symbol π is the 16th letter of the Greek alphabet. See Section 13.4.3: Circles and $\operatorname{Pi}(\pi)$.
pictograph A graph constructed with pictures or symbols. See Section 12.2.3: Organizing and Displaying Data.

pie graph Same as circle graph.
pint (pt) A U.S. customary unit of volume or capacity equal to 2 cups, or 16 fluid ounces. A handy saying to remember is A pint's a pound the world around, meaning that a pint of water weighs about 1 pound. See the Tables of Measures and Section 14.5: Volume (Capacity). place value A system that gives a digit a value according to its position, or place, in a number. In our standard, base-ten (decimal) system for writing numbers, each place has a value 10 times that of the place to its right and 1 tenth the value of the place to its left.

thousands	hundreds	tens	ones	tenths	hundredths
A place-value chart					

plane In Everyday Mathematics, a 2-dimensional flat surface that extends forever in all directions. In formal Euclidean geometry, plane is an undefined geometric term. See Section 13.4: Planes and Plane Figures.

A plane
plane figure A 2-dimensional figure that is entirely contained in a single plane. For example, triangles, squares, pentagons, circles, and parabolas are plane figures; lines, rays, cones, cubes, and prisms are not. See Section 13.4: Planes and Plane Figures.
point In Everyday Mathematics, an exact location in space. Points are usually labeled with capital letters. In formal Euclidean geometry, point is an undefined geometric term. See Section 13.2: Points.

Lines m and n intersect at point E.
point symmetry (1) A figure has point symmetry if it is a reflection image of itself through a center of symmetry C. A line through C and a point M on the figure intersects the reflection image at point M^{\prime} where the length of $\overline{C M}$ equals the length of $\overline{C M^{\prime}}$. (2) Point symmetry
is the same as rotation symmetry around point C through a 180° turn.

A polygon with point symmetry through C.
poly- A prefix meaning many.
polygon A 2-dimensional figure formed by three or more line segments (sides) that meet only at their endpoints (vertices) to make a closed path. The sides may not cross one another. See Section 13.4.2: Polygons (n-gons).

Polygons
polyhedron A 3-dimensional figure formed by polygons with their interiors (faces) and having no holes. Plural is polyhedrons or polyhedra. See Section 13.5.2: Polyhedrons.

population (1) The total number of people living within a defined geographic region. (2) In data collection, the group of people or objects that is the focus of study. Large populations are often studied by picking a representative random sample from the population. See Section 12.2.2: Collecting and Recording Data.
population density The number of people living in a defined geographic region, usually given as a rate, such as 876 people per square mile.
positive numbers Numbers greater than 0 ; the opposites of the negative numbers. Positive numbers are plotted to the right of 0 on a horizontal number line or above 0 on a vertical number line. See Section 9.4: Positive and Negative Numbers.
positive power of 10 A number that can be written in the form 10^{a}, where a is a counting number. That is, the numbers $10,100,1,000$, and so on, that can be written using only 10 s as factors. Compare to negative power of 10. See Section 10.1.2: Powers and Exponents.
positive rational numbers Rational numbers greater than 0 ; the opposites of the negative rational numbers. For example, $7, \frac{4}{3}, \frac{1}{1,000}, 0.01,8.125$, and $5.111 \ldots$ are positive rational numbers. See Section 9.4: Positive and Negative Numbers.
poster In Everyday Mathematics, a page displaying a collection of illustrated numerical data. A poster may be used as a source of data for developing number stories.
pound (lb) A U.S. customary unit of weight equal to 16 ounces and defined as 0.45359237 kilograms. See the Tables of Measures and Section 14.6: Weight and Mass.
power Same as exponent.
power of a number A product of factors that are all the same; the result of a^{b} for any numbers a and b. For example, $5^{3}=5 * 5 * 5=125$ is read " 5 to the third power" or "the third power of 5 " because 5 is a factor three times. See exponential notation and Section 10.1.2: Powers and Exponents.
power of 10 (1) In Everyday Mathematics, a number that can be written in the form 10^{a}, where a is a counting number. That is, the numbers $10=10^{1}, 100=10^{2}, 1,000=10^{3}$, and so on, that can be written using only 10 s as factors. Same as positive power of 10. (2) More generally, a number that can be written in the form 10^{a}, where a is an integer. That is, all the positive and negative powers of 10 together, along with $10^{0}=1$. See Section 10.1.2: Powers and Exponents.
precise Exact or accurate.
precise calculations The more accurate measures or other data are, the more precise any calculations using those numbers can be. See significant digits and Section 16.2: Approximation and Rounding.
precise measures The smaller the scale of a measuring tool, the more precise a measurement can be. For example, a measurement to the nearest inch is more precise than a measurement to the nearest foot. A ruler with $\frac{1}{16}$-inch markings can be more precise than a ruler with only $\frac{1}{4}$-inch markings, depending on the skill of the person doing the measuring.
predict In mathematics, to say what will happen in the future based on experimental data or theoretical calculation.
prediction line A line on a graph of data that is used to predict values that are not in the data set. In statistics, prediction lines can be fit to data using a technique called regression analysis. In elementary school, prediction lines are usually drawn "by eye" to pass as close as possible to plotted data points.

preimage The original figure in a transformation. Compare to image. See Section 13.7:
Transformations.

prime factorization A counting number written as a product of prime-number factors. Every counting number greater than 1 has a unique prime factorization. For example, the prime factorization of 24 is $2 * 2 * 2 * 3$. See Section 9.8.1: Prime and Composite Numbers: Divisibility. prime meridian An imaginary semicircle on Earth that connects the North and South Poles through Greenwich, England. See lines of longitude and Section 15.4.4: The Global Grid System.
prime number A counting number greater than 1 that has exactly two whole-number factors, 1 and itself. For example, 7 is a prime number because its only factors are 1 and 7 . The first five prime numbers are $2,3,5,7$, and 11 . Also simply called primes. Compare to composite number. See Section 9.8.1: Prime and Composite Numbers: Divisibility.
prism A polyhedron with two parallel and congruent polygonal regions for bases and lateral faces formed by all the line segments with endpoints on corresponding edges of the bases. The lateral faces are all parallelograms. Lateral faces intersect at lateral edges. In a right prism, the lateral faces are rectangular. Prisms get their names from the shape of their bases. See Section 13.5.2: Polyhedrons.

A triangular prism

A rectangular prism

A hexagonal prism
probability A number from 0 through 1 giving the likelihood that an event will happen. The closer a probability is to 1 , the more likely the event is to happen. The closer a probability is to 0 , the less likely the event is to happen. For example, the probability that a fair coin will show HEADS is $\frac{1}{2}$. See Section 12.1: Probability.
Probability Meter In Fifth and Sixth Grade Everyday Mathematics, a tool used to show probabilities as fractions, decimals, and percents. See Section 12.4.2: Probability Meter.
probability tree diagram A drawing used to analyze a probability situation that consists of two or more choices or stages. For example, the branches of the probability tree diagram below represent the four equally likely outcomes of HEADS H and tails T when one coin is flipped two times. See Section 12.4.3: Tree Diagrams.

product The result of multiplying two numbers, called factors. For example, in $4 * 3=12$, the product is 12 .
program a calculator To instruct a calculator to repeat a calculation using its memory instead of having the user enter a key sequence over and over. In Everyday Mathematics, students program their calculators to skip count using the machines' built-in constant operation feature. See Section 3.1.1: Calculators.
Project In Everyday Mathematics, a thematic activity to be completed in one or more days by small groups or by a whole class. Projects often involve collecting and analyzing data and are usually cross-curricular in nature. See Section 1.2.7: Projects.
proper factor Any factor of a counting number except the number itself. For example, the factors of 10 are $1,2,5$, and 10 , and the proper factors of 10 are 1,2 , and 5. See Section 9.8.1: Prime and Composite Numbers: Divisibility.
proper fraction A fraction in which the numerator is less than the denominator. A proper fraction is between -1 and 1 . For example, $\frac{3}{4},-\frac{2}{5}$, and $\frac{12}{24}$ are proper fractions. Compare to improper fraction. Everyday Mathematics does not emphasize these distinctions.
property (1) A generalized statement about a mathematical relationship such as the Distributive Property of Multiplication over Addition. (2) Same as attribute.
proportion A number model equating two fractions. Often the fractions in a proportion represent rates or ratios. For example, the problem Alan's speed is 12 miles per hour. At the same speed, how far can he travel in 3 hours? is modeled by the proportion

$$
\frac{12 \text { miles }}{1 \text { hour }}=\frac{n \text { miles }}{3 \text { hours }} .
$$

See Section 9.3.3: Rates, Ratios, and Proportions and Section 17.2.4: Solving Open Sentences.
protractor A tool used for measuring or drawing angles. A half-circle protractor can be used to measure and draw angles up to 180°. A full-circle protractor can be used to measure and draw angles up to 360°. One of each type is on the Geometry Template. See Section 14.11.2:
Protractors and the Percent Circle.

pyramid A polyhedron made up of any polygonal region for a base, a vertex (apex) not in the plane of the base, and all of the line segments with one endpoint at the apex and the other on an edge of the base. All faces except perhaps the base are triangular. Pyramids get their name from the shape of their base. See Section 13.5.2: Polyhedrons.

Pythagorean theorem If the legs of a right triangle have lengths a and b and the hypotenuse has length c, then $a^{2}+b^{2}=c^{2}$.
See Section 13.4.2: Polygons (n-gons).

0

quad- A prefix meaning four. quadrangle Same as quadrilateral.
quadrant One of the four sections into which a rectangular coordinate grid is divided by the two axes. The quadrants are typically numbered I, II, III, and IV counterclockwise beginning at the upper right.
 quadrilateral A 4 -sided polygon. See square, rectangle, parallelogram, rhombus, kite, trapezoid, and Section 13.4.2: Polygons (n-gons).

quart A U.S. customary unit of volume or capacity equal to 32 fluid ounces, 2 pints, or 4 cups. See the Tables of Measures and Section 14.5: Volume (Capacity).
quick common denominator The product of the denominators of two or more fractions. For example, the quick common denominator of $\frac{3}{4}$ and $\frac{5}{6}$ is $4 * 6=24$. In general, the quick common denominator of $\frac{a}{b}$ and $\frac{c}{d}$ is $b * d$. As the name suggests, this is a quick way to get a common denominator for a collection of fractions, but it does not necessarily give the least common denominator. See Section 11.3.5: Fraction Division.
quotient The result of dividing one number by another number. For example, in $10 / 5=2$, the quotient is 2 .

quotitive division Same as measurement division.

B

radius (1) A line segment from the center of a circle (or sphere) to any point on the circle (or sphere). (2) The length of this line segment. The length of a radius is half the length of a diameter. Plural is radiuses or radii. See Section 13.4.3: Circles and $\mathrm{Pi}(\pi)$.

random draw Taking an object from a set of objects in which each object has an equally likely chance of being chosen. For example, drawing a card from a deck and drawing a domino from a bag of dominoes are random draws. See Section 12.1.2: The Language of Chance.
random experiment An experiment in which all outcomes are equally likely. No one outcome is more predictable than any other. See Section 12.1.2: The Language of Chance.
random number A number produced by a random experiment, such as rolling a die or spinning a spinner. For example, rolling a fair die produces random numbers because each of the six possible numbers $1,2,3,4,5$, and 6 has the same chance of coming up. See Section 12.1.2: The Language of Chance.
random sample A sample that gives all members of the population the same chance of being selected. See Section 12.2.2: Collecting and Recording Data.
range The difference between the maximum and the minimum in a set of data. Used as a measure of the spread of the data. See Section 12.2.4: Data Analysis.
rank (1) To put in order by size; to sort from smallest to largest or vice versa. (2) A row in an array. In the military, rows and columns of rectangular formations are sometimes called rank and file, respectively.
rate A comparison by division of two quantities with different units. For example, traveling 100 miles in 2 hours is an average rate of $\frac{100 \mathrm{mi}}{2 \mathrm{hr}}$, or 50 miles per hour. Compare to ratio. See Section 9.3.3: Rates, Ratios, and Proportions and Section 10.3.2: Multiplication and Division Use Classes.
rate diagram A diagram used in Everyday Mathematics to model rate situations. The diagram includes two quantities and the rate comparing them. See situation diagram and Section 10.3.2: Multiplication and Division Use Classes.

rows	chairs per row	chairs
6	4	$?$

A rate diagram
rate-multiplication story A number story in which one quantity is a rate times another quantity. A typical rate is speed, which multiplied by a time traveled gives distance traveled. There are many other rates such as price per pound or hours per person. For example, 8 people work a total of 20 hours. What is the average number of work hours per person? is a rate-multiplication story. See Section 10.3.2: Multiplication and Division Use Classes.
rate table A display of rate information. In a rate table, the fractions formed by the two numbers in each column are equivalent fractions. For example, $\frac{35}{1}=\frac{70}{2}$ in the table below. See Section 10.3.2: Multiplication and Division Use Classes.

miles	35	70	105	140	175	210
gallons	1	2	3	4	5	6

rate unit A compound unit for a rate. For example, miles per hour, dollars per pound, and words per minute are rate units. See Section 9.3.3: Rates, Ratios, and Proportions.
ratio A comparison by division of two quantities with the same units. Ratios can be fractions, decimals, percents, or stated in words. Ratios can also be written with a colon between the two numbers being compared. For example, if a team wins 3 games out of 5 games played, the ratio of wins to total games is $\frac{3}{5}, 3 / 5,0.6,60 \%, 3$ to 5 , or 3:5 (read "three to five"). Compare to rate. See Section 9.3.3: Rates, Ratios, and Proportions. rational numbers Numbers that can be written in the form $\frac{a}{b}$, where a and nonzero b are integers. The decimal form of a rational number either terminates or repeats. For example, $\frac{2}{3},-\frac{2}{3}, 0.5$, 20.5 , and $0.333 \ldots$ are rational numbers. See Section 9.3: Fractions, Decimals, Percents, and Rational Numbers.
ray A part of a line starting at the ray's endpoint and continuing forever in one direction. A ray is often named by its endpoint and another point on it. See Section 13.3: Lines, Segments, and Rays.

r-by- c array A rectangular arrangement of elements with r rows and c elements per row. Among other things, an r-by- c array models r sets with c objects per set. Although listing rows before columns is arbitrary, it is in keeping with the order used in matrix notation, which students will study later in school.
real numbers All rational and irrational numbers; all numbers that can be written as decimals. For every real number there is a corresponding point on a number line, and for every point on the number line there is a real number. See Section 9.6: Real Numbers.
recall survey A survey in which data are gathered by asking people what they remember about a particular topic. For example, a recall survey might ask people to list what soft drinks they consumed in the previous week.
reciprocals Two numbers whose product is 1 . For example, 5 and $\frac{1}{5}, \frac{3}{5}$ and $\frac{5}{3}$, and 0.2 and 5 are pairs of reciprocals. Same as multiplicative inverses.
rectangle A parallelogram with all right angles. See Section 13.4.2: Polygons (n-gons).
rectangle method A strategy for finding the area of a polygon in which one or more rectangles are drawn around all or parts of the polygon though its vertices. The sides of the drawn rectangle(s), together with the sides of the original figure, define regions that are either rectangles or triangular halves of rectangles. Add and/or subtract the areas of these rectangular and triangular regions to get the area of the original polygon. For example, rectangle $R Y S X$ was drawn around the original triangle $X Y Z$ below.

Area of $\triangle X Y Z=$ area of rectangle $R Y S X-$ area of $\triangle X Y R$ - area of $\triangle Y Z S$
rectangular array An arrangement of objects in rows and columns that form a rectangle. All rows have the same number of objects, and all columns have the same number of objects. See r-by-c array and Section 10.3.2:
Multiplication and Division Use Classes.

rectangular coordinate grid
d (1) In Everyday
Mathematics, same as coordinate grid. (2) A coordinate grid with perpendicular axes. See Section 15.3.2: 2- and 3-Dimensional Coordinate Systems.
rectangular prism A prism with rectangular bases. The four faces that are not bases are either rectangles or parallelograms. For example, a shoe box models a rectangular prism in which all sides are rectangles. See Section 13.5.2: Polyhedrons.

Rectangular prisms
rectangular pyramid A pyramid with a rectangular base. See Section 13.5.2: Polyhedrons.

rectilinear figure (1) In Everyday Mathematics, a closed 2-dimensional shape having line segments for sides and only 90° or 270° angles. (2) Any shape made up of line segments.

reduce To decrease the size of an object or figure without changing its shape. Same as shrink. See size-change factor and Section 13.7.2: Size-Change Transformations.
reduce a fraction To rewrite a fraction in a simpler form. See simplest form of a fraction and Section 9.3.1: Fraction and Decimal Notation.
reference frame A system for locating numbers within a given context, usually with reference to an origin or zero point. For example, number lines, clocks, calendars, temperature scales, and maps are reference frames. See Chapter 15: Reference Frames.
reflection A point A^{\prime} is a reflection image of a point A over a line of reflection l if A^{\prime} and A are the same distance from l on a line perpendicular to l. If all points on one figure are

A reflection reflection images of all the points on another figure over the same line, the figures are reflection images. Informally called a flip. See Section 13.7.1: Reflections, Rotations, and Translations. reflex angle An angle with a measure between 180° and 360°. See Section 13.4.1: Angles and Rotations.

regular polygon A polygon in which all sides are the same length and all angles have the same measure. See Section 13.4.2: Polygons (n-gons).

regular polyhedron A polyhedron whose faces are all congruent regular polygons and in which the same number of faces meet at each vertex. The five regular polyhedrons, known as the Platonic solids, are shown below.

regular tessellation A tessellation of one regular polygon. The only three regular tessellations are shown below. See Section 13.10: Tessellations.

Samples of the three regular tessellations
relation symbol A symbol used to express a relationship between two quantities. See Section 10.2: Reading and Writing Number Sentences.

Relation	Meaning
$=$	is equal to
\neq	is not equal to
$<$	is less than
$>$	is greater than
\leq	is less than or equal to
\geq	is greater than or equal to
\approx	is approximately equal to

remainder An amount left over when one number is divided by another number. For example, in $16 / 3 \rightarrow 5 \mathrm{R} 1$, the quotient is 5 and the remainder R is 1 . See Section 10.1.1: The Four Basic Arithmetic Operations.
repeating decimal A decimal in which one digit or a group of digits is repeated without end. For example, $0.3333 \ldots$ and $0 . \overline{147}$ are repeating decimals. Compare to terminating decimal. See Section 9.3.1: Fraction and Decimal Notation. revolution Movement on a circle or other closed curve around some point. The planets revolve around the sun in nearly-circular elliptical orbits. rhombus A parallelogram with all sides the same length. All rhombuses are parallelograms. Every square is a rhombus, but not all rhombuses are squares. Also called a diamond. Plural is rhombuses or rhombi. See Section 13.4.2: Polygons (n-gons).

Rhombuses
right angle A 90° angle. See Section 13.4.1: Angles and Rotations.

Right angles
right cone or pyramid A cone or pyramid whose base is perpendicular to the line segment joining the apex and the center of the base. See Section 13.5.2: Polyhedrons and Section 13.5.3: Solids with Curved Surfaces.
right cylinder A cylinder whose bases are perpendicular to the line segment joining the centers of the bases. See Section 13.5.3: Solids with Curved Surfaces.

A right cone

A right cylinder
right prism A prism whose bases are perpendicular to all of the edges that connect the two bases. See Section 13.5.2: Polyhedrons.

A right triangular prism
right triangle A triangle with a right angle. See Section 13.4.2: Polygons (n-gons).

Right triangles

Roman numerals Letters that are used alone and in combination to represent numbers in an ancient Roman system of numeration. Roman numerals are found on clocks, building cornerstones, preliminary pages in books, movie copyright dates, and other places.

Roman Numerals		
$\mathrm{I}=1$	$\mathrm{X}=10$	$C=100$
$\mathrm{II}=2$	$X X=20$ (2 tens)	$C C=200$
III $=3$	XXX $=30$ (3 tens)	$C C C=300$
$\mathrm{IV}=4$	XL = 40 (50 less 10)	$C D=400$
$V=5$	$\mathrm{L}=50$	$\mathrm{D}=500$
$\mathrm{VI}=6$	$L X=60$ (50 plus 10)	$C M=900$
$\mathrm{VII}=7$	LXX = 70 (50 plus 20)	$\mathrm{M}=1,000$
$\mathrm{VIII}=8$	LXXX = 80 (50 plus 30)	$\overline{\bar{X}}=10,000$
$\mathrm{IX}=9$	XC = 90 (100 less 10)	$\begin{aligned} \overline{\mathrm{C}}= & 100,000 \\ \infty= & 100,000,000 \\ & \text { or infinity } \end{aligned}$

rotation (1) A point P^{\prime} is a rotation image of a point P around a center of rotation C if P^{\prime} is on the circle with center C and radius $C P$. If all the points in one figure are

A rotation rotation images of all the points in another figure around the same center of rotation and with the same angle of rotation, the figures are rotation images. The center can be inside or outside of the original image. Informally called a turn. See Section 13.7.1: Reflections, Rotations, and Translations. (2) If all points on the image of a 3 -dimensional figure are rotation images around a point on a line called the axis of rotation, then the image is a rotation image of the original figure.
rotation symmetry A figure has rotation symmetry if it is the rotation image of itself after less than a 360° turn around a center or axis of rotation. See Section 13.8.2: Rotation and Point Symmetries.

Shapes with rotation symmetry
round (1) To approximate a number to make it easier to work with, or to make it better reflect the precision of the data. "Rounding up" means to approximate larger than the actual value. "Rounding down" means to approximate smaller than the actual value. See round to the nearest and Section 16.2: Approximation and Rounding. (2) Circular in shape.
round to the nearest To round a number up or down in a particular decimal place, depending on which approximation is closer to the actual value. See Section 16.2: Approximation and Rounding. row (1) A horizontal arrangement of objects or numbers in an array or table. (2) A horizontal section of cells in a spreadsheet. See Section 3.1.3: Spreadsheets.
rubber-sheet geometry Same as topology.

S

same-change rule for subtraction A subtraction algorithm in which the same number is added to or subtracted from both numbers. See Section 11.2.2: Subtraction Algorithms.
sample A part of a population intended to represent the whole population. See random sample and Section 12.2.2: Collecting and Recording Data.
scale (1) The relative size of something. (2) Same as scale factor. (3) A tool for measuring weight.
See Section 14.6: Weight and Mass.
scale of a map Same as map scale.
scale of a number line
The unit interval on a number line or measuring device. The scales on this ruler are 1 millimeter on the left side and $\frac{1}{16}$ inch on the right side. See Section 9.9.2: Number Grids, Scrolls, and Lines.
scale drawing A drawing of an object in which all parts are drawn to the same scale to the object. For example, architects and builders use scale drawings traditionally called blueprints. A map is a scale drawing of a geographical region. See scale factor and Section 15.4.2: Map and Model Scales.

A woodpecker (8 in.) to $\frac{1}{4}$ scale
scale factor (1) The ratio of lengths on an image and corresponding lengths on a preimage in a size change. Same as size-change factor. See Section 13.7.2: Size-Change Transformations. (2) The ratio of lengths in a scale drawing or scale model to the corresponding lengths in the object being drawn or modeled. See Section 15.4.2: Map and Model Scales.
scale model A model of an object in which all parts are made to the same scale to the object. For example, many model trains or airplanes are scale models of actual vehicles. See scale factor and Section 15.4.2: Map and Model Scales.
scalene triangle A triangle with sides of three different lengths. The three angles of a scalene triangle have different measures. See Section 13.4.2: Polygons (n-gons).
scientific calculator A calculator that can display numbers using scientific notation. Scientific calculators follow the algebraic order of operations and can calculate a power of a number, a square root, and several other functions beyond simple 4 -function calculators. Some scientific calculators let you enter and do arithmetic with fractions. See Section 3.1.1: Calculators.
scientific notation A way of writing a number as the product of a power of 10 and a number that is at least 1 and less than 10. Scientific notation allows you to write large and small numbers with only a few symbols. For example, in scientific notation, $4,300,000$ is $4.3 * 10^{6}$, and 0.00001 is $1 * 10^{-5}$. Scientific calculators display numbers in scientific notation. Compare to standard notation and expanded notation. See Section 10.1.2: Powers and Exponents.
second (s or sec) (1) A unit of time defined as $\frac{1}{31,556,925.9747}$ of the tropical year at midnight Eastern Time on New Year's Day, 1900. There are 60 seconds in a minute. (2) An ordinal number in the sequence first, second, third, sector A region bounded by and including an arc and two radii of a circle. A sector resembles a slice of pizza. Circle graphs are made with sectors corresponding to parts of a data set. Also called a wedge.

segment Same as line segment.
semicircle (1) Half of a circle. (2) Half of a circle and the diameter between the endpoints of the arc. Sometimes the interior of this closed figure is also included. See circle and Section 13.4.3: Circles and $\mathrm{Pi}(\pi)$.

A semicircle
semiregular tessellation A tessellation made with congruent copies of two or more different regular polygons. The same combination of polygons must meet in the same order at each vertex point, and the angles at each vertex point must add up to 360°. There are eight semiregular tessellations. Compare to regular tessellation. See name of a tessellation and Section 13.10.1:

A 3.3.4.3.4 semiregular tessellation

Classifying Tessellations.
sequence A list of numbers, often with an underlying rule that may be used to generate subsequent numbers in the list. Frames-andArrows diagrams are used to represent sequences. See Section 17.1.2: Sequences. set A collection or group of objects, numbers, or other items.
short-term memory Memory in a calculator used to store values for immediate calculation. Shortterm memory is usually cleared with a (C), (AC), Clear, or similar key. Compare to long-term memory. See Section 3.1.1: Calculators.
shrink Same as reduce.
side (1) One of the line segments that make up a polygon. (2) One of the rays or segments that form an angle. (3) One of the faces of a polyhedron. side-by-side bar graph A bar graph that uses pairs of bars to compare two related data sets. The graph below compares road miles and air miles from Los Angeles to different cities. See Section 12.2.3: Organizing and Displaying Data.

Miles from Los Angeles

Sieve of Eratosthenes A method for identifying prime numbers named for Eratosthenes (circa 276-194 B.c.), a mathematician and head librarian at the Great Library in Alexandria, Egypt.
To find all prime numbers less than n :

1. List all the counting numbers from 2 to n.
2. Circle 2 . Cross out all the multiples of 2 greater than 2.
3. Circle the first number that is not crossed out. Cross out all the multiples of that number.
4. Repeat Step 3 until the first uncircled and uncrossed number is greater than \sqrt{n}. At this point, the numbers that are not crossed out are all the prime numbers less than or equal to n.

(2)	3	A	5
	7	8	$\not 0$
10	11	12	13
14	15	16	17
18	19	20	21
222	23	24	265

Sieve of Eratosthenes for primes less than 25
significant digits The digits in a number that convey useful and reliable information. A number with more significant digits is more precise than a number with fewer significant digits. In general, calculations should not produce results with more significant digits than the original numbers. See scientific notation and Section 16.2: Approximation and Rounding.
similar figures Figures
that have the same shape, but not necessarily the same size. Compare to congruent. See Section

Similar polygons 13.6.2: Congruence and Similarity.
simpler form of a fraction A fraction renamed as an equivalent fraction with a smaller numerator and smaller denominator. To put a fraction in simpler form, divide both the numerator and the denominator by a common factor greater than 1 . For example, divide the numerator and the denominator of $\frac{18}{24}$ by 2 to get the simpler form $\frac{9}{12}$.
simplest form of a fraction A fraction that cannot be renamed in simpler form. Same as lowest terms of a fraction. A mixed number is in simplest form if its fractional part is in simplest form.
simplify a fraction To write a fraction in simplest form.
simplify an expression To rewrite an expression by clearing grouping symbols and combining like terms and constants. For example, $7 y+4+5+3 y$ simplifies to $10 y+9$ and $3(2 k+5)-k$ simplifies to $5 k+15$. Equations with simplified expressions are often easier to solve. For example, $2(a+4)=$ $4 a+1+3$ simplifies to $2 a+8=4 a+4$. This step is sometimes called "simplifying the equation," although a completely simplified equation is the solution $2=a$. See Section 17.2.3: Simplifying Expressions.
situation diagram A diagram used to organize information in a problem situation in one of the addition/subtraction or multiplication/division use classes. See Section 10.3: Use Classes and Situation Diagrams.
size change A transformation in which the image of a figure is a an enlargement (stretch) or reduction (shrink) of the original figure by a given scale factor. See Section 13.7.2: SizeChange Transformations.
size-change factor Same as scale factor.
skew lines Lines in space that do not lie in the same plane. Skew lines do not intersect and are not parallel. An east-west line on the floor and a north-south line on the ceiling are skew. See Section 13.6.1: Perpendicular and Parallel.

Skew lines can be modeled with two pencils.
slanted (oblique) cylinder, cone, prism, or pyramid A cylinder, cone, prism, or pyramid that is not a right cylinder, right cone, right prism, or right pyramid.

A slanted (oblique) cylinder, cone, prism, and pyramid
slate A lap-size (about 8 -inch by 11 -inch) chalkboard or whiteboard that children use in Everyday Mathematics for recording responses during group exercises and informal group assessments. See Section 1.2.8: Slates.
slide An informal name for a translation. See Section 13.7.1: Reflections, Rotations, and Translations.
slide rule An Everyday Mathematics tool for adding and subtracting integers and fractions.

An Everyday Mathematics slide rule
solution of an open sentence A value or values for the variable(s) in an open sentence that make the sentence true. For example, 7 is a solution of $5+n=12$. Although equations are not necessarily open sentences, the solution of an open sentence is commonly referred to as a solution of an equation. See Section 17.2.4: Solving Open Sentences.
solution of a problem (1) The method by which an answer to a problem is obtained. (2) The answer to a problem. See Chapter 18: Problem Solving.
solution set The set of all solutions of an open sentence. For example, the solution set of $x^{2}=25$ is $\{5,-5\}$ because substituting either 5 or -5 for x makes the sentence true.
span Same as normal span.
special case In Everyday Mathematics, a specific example of a general pattern. For example, $6+6=12$ is a special case of $y+y=2 y$ and $9=4.5 * 2$ is a special case of $A=l * w$. Same as instance of a pattern.
speed A rate that compares distance traveled with the time taken to travel that distance. For example, if a car travels 100 miles in 2 hours, then its average speed is $\frac{100 \mathrm{mi}}{2 \mathrm{hr}}$, or 50 miles per hour. See Section 9.3.3: Rates, Ratios, and Proportions.
sphere The set of all points in space that are an equal distance from a fixed point called the center of the sphere. The distance from the center to the sphere is the radius of the sphere. The diameter of a sphere is twice its radius. Points inside a sphere are not part of the sphere. See Section 13.5.3: Solids with Curved Surfaces.

spreadsheet program A computer application in which numerical information is arranged in cells in a grid. The computer can use the information in the grid to perform mathematical operations and evaluate formulas. When a value in a cell changes, the values in all other cells that depend on it are automatically changed. The name spreadsheet comes from ledger worksheets for financial records. Such sheets were often taped together and then spread out for examination. See Section 3.1.3: Spreadsheets.

口		Class Picnic (\$\$)	\cdots	"	
	A	B	C	D	
1		budget for class picnic			
2					
3	quantity	food items	unit price	cost	
4	6	packages of hamburgers	2.79	16.74	
5	5	packages of hamburger buns	1.29	6.45	
6	3	bags of potato chips	3.12	9.36	
7	3	quarts of macaroni salad	4.50	13.50	
8	4	bottles of soft drinks	1.69	6.76	
9			subtotal	52.81	
10			8\% tax	4.22	
11			total	57.03	\checkmark
く\|III				\Rightarrow	II

A spreadsheet
square A rectangle with all sides of equal length. All angles in a square are right angles. See Section 13.4.2: Polygons (n-gons).

Squares
square array A rectangular array with the same number of rows as columns. For example, 16 objects will form a square array with 4 objects in each row and 4 objects in each column. See Section 10.3.2: Multiplication and Division Use Classes.

A square array
square corner Same as a right angle.
square numbers Figurate numbers that are the product of a counting number and itself. For example, 25 is a square number because $25=5 * 5$. A square number can be represented by a square array and as a number squared, such as $25=5^{2}$. See Section 10.1.2: Powers and Exponents and Section 17.1.2: Sequences.
square of a number n The product of n and itself, commonly written n^{2}. For example, $81=9 * 9=9^{2}$ and $3.5^{2}=3.5 * 3.5=12.25$. See Section 10.1.2: Powers and Exponents. square pyramid A pyramid with a square base. See Section 13.5.2: Polyhedrons.
square root of a number n A number that multiplied by itself is n, commonly written \sqrt{n}. For example, 4 is a square root of 16 , because $4 * 4=16$. Normally, square root refers to the positive square root, but the opposite of a positive square root is also a square root. For example, -4 is also a square root of 16 because $-4 *-4=16$.
square unit A unit to measure area. A model of a square unit is a square with each side a related unit of length. For example, a square inch is the area of a square with 1 -inch sides. Square units are often labeled as the length unit squared. For example, $1 \mathrm{~cm}^{2}$ is read " 1 square centimeter" or " 1 centimeter squared." See Section 14.4: Area.

stacked bar graph A bar graph in which the bars are sub-divided to show additional information. A stacked bar graph shows how a total is made up of several parts. In this example, of all the boys, 30% are on 0 teams, about 45% are on 1 team, and the rest are on 2 or more teams. Compare to side-by-side bar graph.
See Section 12.2.3:
Organizing and
Displaying Data.

Number of Sports Teams

A stacked bar graph
standard notation Our most common way of representing whole numbers, integers, and decimals. Standard notation is base-ten place-value numeration. For example, standard notation for three hundred fifty-six is 356 . Same as decimal notation. See Section 9.3.1: Fraction and Decimal Notation.
standard unit A unit of measure that has been defined by a recognized authority, such as a government or a standards organization. For example, inches, meters, miles, seconds, pounds, grams, and acres are all standard units. See Section 14.2: Measurement Systems.
stem-and-leaf plot A display of data values in which digits with larger place values are "stems" and digits with smaller place values are "leaves." See Section 12.2.3: Organizing and Displaying Data.
Data List: 24, 24, 25, 26, 27, 27, 31, 31, 32, 32, $36,36,41,41,43,45,48,50,52$.

Stems $(10 s)$	Leaves $(1 s)$
2	445677
3	112266
4	11358
5	02

step graph A 2-dimensional coordinate graph that looks like steps because the vertical values of points are the same over an interval of horizontal values, and then change, or "step," for another interval. Horizontal values in a step graph often represent time. See Section 12.2.3: Organizing and Displaying Data.

straight angle A 180° angle. See Section 13.4.1: Angles and Rotations.

straightedge A tool used to draw line segments. Strictly speaking, a straightedge does not have a measuring scale on it, so ignore the marks if you use a ruler as a straightedge. Together, a compass and straightedge are used to construct geometric figures. See Section 13.13.1: Compass-and-Straightedge Constructions.
stretch Same as enlarge.
Study Links In Fourth through Sixth Grade Everyday Mathematics, a suggested follow-up or enrichment activity to be completed at home. See Section 1.2.10: Study Links.
substitute (1) To replace one thing with another.
(2) To replace variables with numbers in an expression or formula. For example, substituting $b=4.5$ and $h=8.5$ in the formula $A=b * h$ gives $A=4.5 * 8.5=38.25$. See Section 17.2.1: Uses of Variables.
subtrahend The number being taken away in a subtraction problem. For example, in $15-5=10$, the subtrahend is 5 .
sum The result of adding two or more numbers. For example, in $5+3=8$, the sum is 8 . Same as total.
summer solstice The longest day of the year, when the sun is farthest north of Earth's equator. The number of hours of daylight depends on the latitude of a location. In Colorado, the summer solstice averages a little less than 16 hours of daylight. Compare to winter solstice.
supplementary angles Two angles whose measures add to 180°. Supplementary angles do not need to be adjacent. Compare to complementary angles. See Section 13.6.3: Relations and Orientations of Angles.

$\angle 1$ and $\angle 2 ; \angle A$ and $\angle B$
are two pairs of supplementary angles.
surface (1) The boundary of a 3-dimensional object. The part of an object that is next to the air. Common surfaces include the top of a body of water, the outermost part of a ball, and the topmost layer of ground that covers Earth. See Section 13.5: Space and 3-D Figures. (2) Any 2-dimensional layer, such as a plane or a face of a polyhedron.
surface area The area of the surface of a 3 -dimensional figure. The surface area of a polyhedron is the sum of the areas of its faces. See the Tables of Formulas and Section 14.4.2: Area Formulas.
survey A study that collects data. Surveys are commonly used to study "demographics" such as people's characteristics, behaviors, interests, and opinions. See Section 12.2.2: Collecting and Recording Data.
symmetric figure A figure that exactly matches with its image under a reflection or rotation. See line symmetry, point symmetry, rotation symmetry, and Section 13.8: Symmetry.
symmetry The balanced distribution of points over a line or around a point in a symmetric figure.
See line symmetry, point symmetry, rotation symmetry, and Section 13.8: Symmetry.

A figure with line symmetry

A figure with rotation symmetry

\top

tally (1) To keep a record of a count, commonly by making a mark for each item as it is counted.
(2) The mark used in a count. Also called tally mark and tick mark. See Section 12.2.2: Collecting and Recording Data.
tally chart A table to keep track of a tally, typically showing how many times each value appears in a set of data.

Number of Pull-Ups	Number of Children
0	H\#I/
1	H\#
2	//I/
3	//
A tally chart	

tangent A line, segment, ray, or curve that intersects a curve or curved surface at exactly one point.

A line tangent to a circle
tangent circles Two circles with exactly one point in common.

Tangent circles
temperature How hot or cold something is relative to another object or as measured on a standardized scale such as degrees Celsius or degrees Fahrenheit. See Section 15.1: Temperature.
template In Everyday Mathematics, a sheet of plastic with geometric shapes cut out of it, used to draw patterns and designs. See Section 13.13.2: Pattern-Block and Geometry Templates.
term (1) In an algebraic expression, a number or a product of a number and one or more variables. For example, in the equation $5 y+3 k=8$, the terms are $5 y, 3 k$, and 8 . The 8 is a constant term, or simply a constant, because it has no variable part. See Section 17.2.2: Reading and Writing Open Sentences. (2) An element in a sequence. In the sequence of square numbers, the terms are $1,4,9,16$, and so on.
terminating decimal A decimal that ends. For example, 0.5 and 0.125 are terminating decimals. See Section 9.3.1: Fraction and Decimal Notation and Section 9.3.4: Rational Numbers and Decimals. tessellate To make a tessellation; to tile a surface.
tessellation A pattern of shapes that covers a surface completely without overlaps or gaps. Same as a tiling. See Section 13.10: Tessellations.

A tessellation
test number A number used to replace a variable when solving an equation using the trial-anderror method. Test numbers are useful for "closing in" on an exact solution. See Section 17.2.4: Solving Open Sentences.
tetrahedron A polyhedron with 4 faces. A tetrahedron is a triangular pyramid. See Section 13.5.2: Polyhedrons.
theorem A mathematical statement that can be proven to be true. For example, the Pythagorean theorem states that if the legs of a right triangle have lengths a and b and the hypotenuse has length c, then $a^{2}+b^{2}=c^{2}$. The Pythagorean theorem has been proven in hundreds of ways over the past 2,500 years.
3-dimensional (3-D) coordinate system A reference frame in which any point on a 3 -dimensional figure can be located with three coordinates relative to the origin of three axes intersecting perpendicularly at their origins in space. Compare to 1 - and 2-dimensional coordinate systems. See Section 15.3.2: 2- and 3-Dimensional Coordinate Systems.

3-dimensional (3-D) figure A figure whose points are not all in a single plane. Examples include prisms, pyramids, and spheres, all of which have length, width, and height. See Section 13.1: Dimension.
tick marks (1) Marks showing the scale of a number line or ruler. (2) Same as tally (2).
tile A shape used in a tessellation. A tessellation of only one tile is called a same-tile tessellation. tiling Same as tessellation.
time graph A graph representing a story that takes place over time. The units on the horizontal axis are time units.

timeline A number line showing when events took place. In some timelines the origin is based on the context of the events being graphed, such as the birth date of the child's life graphed below. The origin can also come from another reference system, such as the year A.D., in which case the scale below might cover the years 2000 through 2005. See Section 15.2.3: Timelines.

A timeline of a child's milestones
toggle A key on a calculator that changes back and forth between two displays each time it is pressed. For example, on some calculators + + toggles between a number and its opposite. See Section 3.1.1: Calculators.
top-heavy fraction Same as improper fraction. topological transformation A transformation that pairs a figure with its image after shrinking, stretching, twisting, bending, or turning inside out. Tearing, breaking, and sticking together are not allowed. Shapes that can be changed into one another by a topological transformation are called topologically equivalent shapes. For example, a donut is topologically equivalent to a coffee cup. See topology, genus, and Section 13.11: Topology.
topology The study of the properties of shapes that are unchanged by shrinking, stretching, twisting, bending, and turning inside out. Tearing, breaking, and sticking together are not allowed. Same as rubber-sheet geometry. See topological transformation and Section 13.11: Topology.
trade-first subtraction A subtraction algorithm in which all necessary trades between places in the numbers are done before any subtractions are carried out. Some people favor this algorithm because they can concentrate on one thing at a time. See Section 11.2.2: Subtraction Algorithms. transformation An operation on a geometric figure (the preimage) that produces a new figure (the image). The study of transformations is called transformation geometry. Transformations are often based on rules for how points compare, as in the translation shown in the next definition. Although the preimage does not actually move under a transformation, it is convenient to think and talk about transformations as moving a figure from one place to another and sometimes changing its size or shape. So Everyday Mathematics encourages using informal terms such as flip, turn, and slide. See isometry transformation, reflection, rotation, translation, size change and Section 13.7: Transformations.
translation A transformation in which every point in the image of a figure is at the same distance in the same direction from its corresponding point in the figure. Informally called a slide. See Section 13.7.1: Reflections, Rotations, and Translations.

A translation
translation tessellation A tessellation made of a tile in which one or more sides are translation images of the opposite side(s). Dutch artist M. C. Escher (1898-1972) created many beautiful and elaborate translation tessellations. See Section 13.10: Tessellations.

A translation tessellation
transparent mirror A piece of semitransparent plastic used to draw and study reflections. See Section 13.13.5: Transparent Mirrors.

transversal A line that intersects two or more other lines. See Section 13.6.3: Relations and Orientations of Angles.
trapezoid A quadrilateral that has exactly one pair of parallel sides. In Everyday Mathematics, both pairs of sides cannot

Trapezoids
be parallel; that is, a parallelogram is not a trapezoid. See Section 13.4.2: Polygons (n-gons).
tree diagram A network of points connected by line segments and containing no closed loops. Factor trees and probability trees are tree diagrams used, respectively, to factor numbers and to represent probability situations in which there is a series of events. The first tree diagram below shows the prime factorization of 30 . The second tree diagram models flipping one coin two times to get heads H or tails T .

Tree diagrams
tri- A prefix meaning three, as in tricycle. trial-and-error method A method for finding the solution of an equation by trying a sequence of test numbers. See Section 17.2.4: Solving Open Sentences.
triangle A 3-sided polygon. See equilateral triangle, isosceles triangle, scalene triangle, acute triangle, right triangle, obtuse triangle, and Section 13.4.2: Polygons (n-gons).

triangular numbers Figurate numbers that can be shown by triangular arrangements of dots. The triangular numbers are $\{1,3,6,10,15,21,28,36$, $45, \ldots$. $\}$. See Section 17.1.2: Sequences.

triangular prism A prism whose bases are triangles. See Section 13.5.2: Polyhedrons.

Triangular prisms
triangular pyramid A pyramid in which all faces are triangles, any one of which is the base. A regular tetrahedron has four equilateral triangles for faces and is one of the five regular polyhedrons. See Section 13.5.2: Polyhedrons.

true number sentence A number sentence stating a correct fact. For example, $75=25+50$ is a true number sentence. See Section 10.2: Reading and Writing Number Sentences.
truncate (1) In a decimal, to cut off all digits after the decimal point or after a particular place to the right of the decimal point. For example, 12.345 can be truncated to $12.34,12.3$, or 12 . Integers cannot be truncated. Same as rounding down in places to the right of the decimal point. See round and Section 16.2: Approximation and Rounding. (2) Informally, to cut off a part of a solid figure.

A truncated pyramid
turn An informal name for a rotation.
turn-around facts A pair of multiplication (or addition) facts in which the order of the factors (or addends) is reversed. For example, $3 * 9=27$ and $9 * 3=27$ are turn-around multiplication facts, and $4+5=9$ and $5+4=9$ are turnaround addition facts. There are no turn-around facts for subtraction or division. Turn-around facts are instances of the Commutative Properties of Addition and Multiplication. See Section 16.3.2: Basic Facts and Fact Power.
turn-around rule A rule for solving addition and multiplication problems based on the Commutative Properties of Addition and Multiplication. For example, if you know that $6 * 8=48$, then, by the turn-around rule, you also know that $8 * 6=48$.
twin primes Two prime numbers with a difference of 2. For example, 3 and 5 and 11 and 13 are pairs of twin primes.
2-dimensional (2-D) coordinate system A reference frame in which any point on a 2 -dimensional figure can be located with an ordered pair of coordinates relative to the origin of two intersecting perpendicular axes in space. Compare to 1 - and 3-dimensional coordinate systems. See Section 15.3.2: 2- and 3-Dimensional Coordinate Systems.
2-dimensional (2-D) figure A figure whose points are all in one plane but not all on one line. Examples include polygons and circles, all of which have length and width but no height. See Section 13.1: Dimension.

U

unfair game A game in which every player does not have the same chance of winning. See Section 12.1.2: The Language of Chance.
unit A label used to put a number in context. In measuring length, for example, inches and centimeters are units. In a problem about 5 apples, apple is the unit. In Everyday Mathematics, students keep track of units in unit boxes. See Section 10.3.1: Addition and Subtraction Use Classes.
unit box In Everyday
Mathematics, a box displaying the unit for the numbers in the problems at hand. See Section 1.3.6: Unit Boxes.

A unit box
unit fraction A fraction whose numerator is 1. For example, $\frac{1}{2}, \frac{1}{3}, \frac{1}{12}, \frac{1}{8}$, and $\frac{1}{20}$ are unit fractions. Unit fractions are especially useful in converting among units within measurement systems. For example, because 1 foot $=12$ inches you can multiply a number of inches by $\frac{1}{12}$ to convert to feet. See Section 14.2.3: Converting between Measures. unit interval The interval between 0 and 1 on a number line.
unit percent One percent (1\%).
unit price The price for one item or per unit of measure. For example, the unit price of a 5-ounce package of onion powder selling for $\$ 2.50$ is $\$ 0.50$ per ounce. In recent years, grocery stores have begun posting unit prices to help consumers compare prices of different brands of a similar product or different size containers of the same product. See Section 14.2.3: Converting between Measures.
unit ratio Same as n-to- 1 ratio.
unit whole Same as whole or ONE.
unlike denominators Denominators that are different, as in $\frac{1}{2}$ and $\frac{1}{3}$.
unlike fractions Fractions with unlike denominators. upper quartile In Everyday Mathematics, in an ordered data set, the middle value of the data above the median. Data values at the median are not included when finding the upper quartile. Compare to lower quartile. See Section 12.2.3: Organizing and Displaying Data.
U.S. customary system The measuring system used most often in the United States. Units for length include inch, foot, yard, and mile; units for weight include ounce and pound; units for volume or capacity include cup, pint, quart, gallon, and cubic units; and the main unit for temperature change is degrees Fahrenheit. See Section 14.2.1: U.S. Customary System.
use class In Everyday Mathematics, a problem situation that one of the basic arithmetic operations can be used to solve. Students use situation diagrams to help model problems from the different use classes. See addition/subtraction use classes, multiplication/division use classes, and Section 10.3: Use Classes and Situation Diagrams.

v

value of a variable A specific number or quantity represented by a variable. For example, in $y=4 x+3$, if the value of x is 7 , then the value of y that makes the equation true is 31. See Section 17.2.2: Reading and Writing Open Sentences.
vanishing line A line connecting a point on a figure in a perspective drawing with a vanishing point.

vanishing point In a perspective drawing, the point at which parallel lines that extend away from the viewer seem to meet. It is located on the horizon line. See vanishing line and Section 13.5.4:
Connecting 2-D and 3-D.
variable A letter or other symbol that represents a number. A variable can represent a single number, as in $5+n=9$, because only $n=4$ makes the sentence true. A variable can also stand for many different numbers, as in $x+2<10$, because any number x less than 8 makes the sentence true. In formulas and properties, variables stand for all numbers. For example, $a+3=3+a$ for all numbers a. See Section 17.2.1: Uses of Variables.
variable term A term that contains at least one variable. For example, in $4 b-8=b+5,4 b$ and b are variable terms. See Section 17.2.2: Reading and Writing Open Sentences.
Venn diagram A picture that uses circles or rings to show relationships between sets. In this diagram, $22+8=30$ girls are on the track team, and 8 are on both the track and the basketball teams. See Section 12.2.3: Organizing and Displaying Data.

Number of Girls on Sports Teams

vernal equinox The first day of spring, when the sun crosses the plane of Earth's equator and day and night are about 12 hours each. "Equinox" is from the Latin aequi- meaning "equal" and nox meaning "night." Compare to autumnal equinox.
vertex The point at which the rays of an angle, the sides of a polygon, or the edges of a polyhedron meet. Plural is vertexes or vertices. In Everyday Mathematics, same as corner. See Section 13.4: Planes and Plane Figures and Section 13.5: Space and 3-D Figures.

vertex point A point where the corners of tessellation tiles meet.
vertical Upright; perpendicular to the horizon. Compare to horizontal.
vertical angles The angles made by intersecting lines that do not share a common side. Same as opposite angles. Vertical angles have equal measures. See Section 13.6.3: Relations and Orientations of Angles.

Angles 1 and 3 ; angles 2 and 4 are pairs of vertical angles.
volume (1) The amount of space occupied by a 3 -dimensional figure. Same as capacity. (2) Less formally, the amount a container can hold.
Volume is often measured in cubic units, such as cm^{3}, cubic inches, or cubic feet. See the Tables of Formulas and Section 14.5: Volume (Capacity).

W

weight A measure of how heavy something is; the force of gravity on an object. An object's mass is constant, but it weighs less in weak gravity than in strong gravity. For example, a person who weighs 150 pounds in San Diego weighs about 23 pounds on the moon. See Section 14.6: Weight and Mass.
"What's My Rule?" problem In Everyday
Mathematics, a problem in which two of the three parts of a function (input, output, and rule) are known, and the third is to be found out. See Section 17.1.3: Functions.

A "What's My Rule?" problem
whole An entire object, collection of objects, or quantity being considered in a problem situation; 100%. Same as ONE and unit whole. See Section 9.3.2: Uses of Fractions.
whole numbers The counting numbers and 0 . The set of whole numbers is $\{0,1,2,3, \ldots\}$. width of a rectangle The length of one side of a rectangle or rectangular object, typically the shorter side.
wind-chill temperature A measure of how cold the air feels, based on a combination of wind speed and air temperature.
winter solstice The shortest day of the year, when the sun is farthest south of Earth's equator. The number of hours of daylight depends on the latitude of a location. In Colorado, the winter solstice averages a little more than 9 hours of daylight. Compare to summer solstice.

Y

yard (yd) A U.S. customary unit of length equal to 3 feet, or 36 inches. To Henry I of England, a yard was the distance from the tip of the nose to the tip of the middle finger. In Everyday Mathematics, it is from the center of the chest to the tip of the middle finger. See the Tables of Measures and Section 14.1: Personal Measures.

Z

zero fact In Everyday Mathematics: (1) The sum of two 1-digit numbers when one of the addends is 0 , as in $0+5=5$. If 0 is added to any number, there is no change in the number. Same as the additive identity. (2) The product of two 1-digit numbers when one of the factors is 0 , as in $4 * 0=0$. The product of a number and 0 is always 0 .
zero point Same as origin.

