McGraw-Hill makes no representations or warranties as to the accuracy of any information contained in this McGraw-Hill Material, including any warranties of merchantability or fitness for a particular purpose. In no event shall McGraw-Hill have any liability to any party for special, incidental, tort, or consequential damages arising out of or in connection with the McGraw-Hill Material, even if McGraw-Hill has been advised of the possibility of such damages.

Go to Grade 3 Everyday Mathematics Sample Lesson

\section*{8.7

Fipactions Girealer Than ONE

 Than ONE}Objective to demonstrate naming quantities greater than 1 with fractions and mixed numbers.

1 Teaching the Lesson

Key Activities

Children model fractions greater than 1 and equivalent mixed numbers by pasting fractional parts of a unit circle onto unit circles. They practice naming numbers of fractional parts as fractions and mixed numbers.

Key Concepts and Skills

- Shade fractional parts of regions to represent fractions greater than 1.
[Number and Numeration Goal 2]
- Model and name mixed numbers and fractions. [Number and Numeration Goal 2]
- Identify equivalent fractions. [Number and Numeration Goal 5]
- Use lines of symmetry to divide figures into equal parts. [Geometry Goal 3]

Key Vocabulary mixed number
Ongoing Assessment: Informing Instruction See page 685.

2 Ongoing Learining \& Practice

Children play the Equivalent Fractions Game.
Children practice and maintain skills through Math Boxes and Home Link activities.
0
Ongoing Assessment: Recognizing Student Achievement Use the Record Sheet.
[Number and Numeration Goal 5]

3 Differentiation Options

BEADINESS
Children use pattern blocks to compare fractions of regions to one whole.

ENRICHMENT

Children write fractions on a number line.

EXTRA PRACTICE

Children play
Fraction Top-lt.

ELL SUPPORT

Children add the term mixed number to their Math Word Banks.

matorials

\square Math Journal 2, pp. 197 and 198
\square Home Link 8.6
\square Teaching Aid Master (Math Masters, p. 436; one copy per 3 children)
\square scissors
\square glue or paste
\square slates
\square crayons

See Advance Preparation

materials

\square Math Journal 2, p. 199
\square Student Reference Book, pp. 283 and 284
\square Home Link Masters (Math Masters, pp. 258 and 259)
\square Fraction Cards; half-sheets of paper

materials

\square Student Reference Book,
pp. 287 and 288
\square Teaching Masters (Math Masters,
pp. 260 and 261)
\square Differentiation Handbook
\square pattern blocks; half-sheets of paper;
Pattern-Block Template
\square Fraction Cards
\square Student Reference Book, pp. 287 and 288
\square Teaching Masters (Math Masters, pp. 260 and 261)
\square Differentiation Handbook
\square pattern blocks; half-sheets of paper; Pattern-Block Template
Fraction Cards

Additional Information

Advance Preparation Make enough copies of Math Masters, page 436 so each child can have one strip of 4 circles. Cut the strips apart and place them next to the Math Message.

Technology

Assessment Management System Game Record Sheet See the iTLG.

Getting Started

Mental Math and Reflexes

Dictate pairs of decimals. Children write them on their slates and circle the larger number. Suggestions:
ooo twenty-seven hundredths; sixty-seven hundredths 0.27;(0.67)
000 five-tenths; five-hundredths (0.5); 0.05 three and six-tenths; three and sixteen-hundredths (3.6); 3.16
-0○ seventy-two hundredths; nine-tenths 0.72; ©.9) forty and eighty-three hundredths; forty-eight and three tenths 40.83;48.3

Math Message

1. Take a strip and cut out the 4 circles.

2. How would you answer the following problems?
\triangleright Emily had 3 apples. She cut one in half and ate one of the halves. How many apples were left?
$>$ Then she cut each of the other whole apples in half. She gave all the halfapples to her friends. How many half-apples did she give away?

Home Link 8.6 Follow-Up

Have partners share their answers for Problems 11-14. Ask a few volunteers to share their solution strategies with the class.

1 Teaching the Lesson

Math Message Follow-Up

(Math Masters, p. 436)
Illustrate the number story in the Math Message on the board.

- Emily had 3 apples. She cut one in half and ate one of the halves. How many apples were left?

- Then she cut each of the other whole apples in half. She gave all of the half-apples to her friends. How many half-apples did she give away?

Write $2 \frac{1}{2}$ and $\frac{5}{2}$ on the board. Ask: Do these numbers- $2 \frac{1}{2}$ and $\frac{5}{2}$ name equivalent amounts of apples? Yes

Teaching Aid Master

Math Masters, p. 436

Math Journal 2, p. 197

Ongoing Assessment: Informing Instruction

Watch for children who have difficulty writing mixed numbers. Write them on the board as you say them to provide a visual reference for children.

Links to the Future

The activities in this lesson expose children to the concept of naming fractional parts greater than one as fractions and mixed numbers. Converting between fractions and mixed numbers is a Grade 5 Goal.

Naming Parts with Fractions and Mixed Numbers

(Math Journal 2, p. 198)
You may want to do Problem 3 with the class to make sure children know what is expected. They color a given number of fractional parts of circles and use the resulting diagrams to name them with a fraction and a mixed number. Note that the answer to Problem 6 is a mixed number greater than 2.

(2) Ongoing Learning \& Practice

Playing the Equivalent Fractions Game

(Student Reference Book, pp. 283 and 284)
The game was introduced in Lesson 8-5. If necessary, children can read the rules for the Equivalent Fractions Game in the Student Reference Book on pages 283 and 284. Have children record equivalent fraction pairs they make on a Record Sheet made from a half-sheet of paper. Remind them to write an = symbol between equivalent fractions.

Ongoing Assessment: Recognizing Student Achievement

> Use the Record Sheet to assess children's progress toward using Fraction Cards to find equivalent fractions. Children are making adequate progress if they record at least 2 pairs. Some children may be able to identify equivalent fractions without using the shaded sides of the cards.
[Number and Numeration Goal 5]

[^0]$\mathbf{8 . 7}$ More Than ONE continued

Math Journal 2, p. 199

Home Link Master

 Family Today the class began looking at fractions greater than 1 and mixed numbers. We have been
Note working with reioin or area modess (shaded areas) for these numbers. Problem 5 asks about explain how he or she figured out what the fraction and mixed number should be for the egg-carton drawings. Please return this Home Link to school tomorrow.

How many fourths? $\frac{6}{\frac{6}{4}}$ fourths
Write the fraction:
Color 6 fourths. Write the mixed number: $1 \frac{2}{4}$ or $1 \frac{1}{2}$

How many thirds? $\frac{7}{\frac{7}{3}}$ thirds
Write the fraction: Write the mixed number: $2 \frac{1}{3}$

Math Masters, p. 258

Math Boxes 8•7
(Math Journal 2, p. 199)

Mixed Practice Math Boxes in this lesson are paired with Math Boxes in Lesson 8-5. The skill in Problem 6 previews Unit 9 content.

Writing/Reasoning Have children write an answer to the following: In Problem 5, what does share equally mean?
Sample answer: Share equally means to divide an amount or a group of things into equal parts. In Problem 5, each person gets an equal amount.

Home Link 8.7

Home Connection Children color figures according to directions and then write fractions and mixed numbers to describe those pictures.

3 Differentiation Options

BEADINESS

Modeling Fractions of Regions Larger than One Whole

(Math Masters, p. 260)
To provide experience with comparing fractions of regions to the WHOLE, have children build the shapes on Math Masters, page 260 with pattern blocks.

ENRICHMENT

Placing Fractions on a Number Line

(Math Masters, p. 261)
To apply children's understanding of mixed numbers, have them identify and locate numbers between consecutive whole numbers on a number line. Have children discuss how they decided where to place their fractions on the number lines.

EXTRA PRACTICE

Playing Fraction Top-It

(Student Reference Book, pp. 287 and 288)
To provide practice with comparing fractions, have children play Fraction Top-It, which was introduced in Lesson 8-6. Children may play the advanced version of the game. If necessary, they can read the rules for both versions of Fraction Top-It in the Student Reference Book on pages 287 and 288.

ELL SUPPORT

Building a Math Word Bank
 (Differentiation Handbook)

To provide language support for fractions, have children use the Word Bank template found in the Differentiation Handbook. Ask children to write the term mixed number, draw a picture representing the term, and write other related words. See the Differentiation Handbook for more information.

INDEPENDENT ACTIVITY

Use only triangles, rhombuses, trapezoids, and hexagons from your pattern blocks to solve the problems below.

1. One hexagon is the WHOLE. Cover the WHOLE with triangles
How many triangles fit in the whole hexagon? 6
Use your pattern blocks to build a figure that is greater than one WHOLE Use your Pattern-Block Template to draw your figure below.

Cover your new drawing with triangles. How many triangles fit in your figure? Answers vary.
2. One trapezoid is the WHOLE. Cover the WHOLE with triangles.
How many triangles fit in the whole trapezoid?
Use your patt Use your Pattern-Block Template to draw your figure below.

Cover your new drawing with triangles. How many triangles is your figure worth? Answers vary.

Math Masters, p. 260

Teaching Master

Math Masters, p. 261

Use the circles that you cut out for the Math Message.

1. Glue 3 halves into the two whole circles.

3 halves or $\frac{3}{2}$
2. Glue 6 fourths into the two whole circles. Fill in the missing digits in the question, the fraction, and the mixed number.

How many fourths? \qquad fourths

Write the fraction: \square Write the mixed number: 1 \square

LESSON
$8 \cdot 7$ More Than ONE continued
3.

How many fourths? \qquad fourths

Color 5 fourths.

4.

How many thirds? \qquad thirds
Write the fraction: $\frac{\square}{\square}$

Color 5 thirds.
Write the mixed number: $1 \frac{\square}{\square}$
5. $\frac{1}{5}$ 立 $\frac{1}{5}<\frac{1}{5}<\frac{1}{5}<\frac{1}{5}<\frac{1}{5}<\frac{1}{5}$

How many fifths? \qquad fifths

Color 8 fifths.

Write the mixed number:

6.

How many thirds? \qquad thirds
Write the fraction: $\frac{\square}{\square}$

Color 8 thirds.

Write the mixed number:

1. In the number 56.714:
the 7 means 7 tenths
the 6 means \qquad
the 4 means \qquad
the 5 means \qquad
the 1 means \qquad

2. Circle the fractions that are equivalent to $\frac{1}{3}$.

$\frac{1}{8}$	$\frac{2}{6}$	$\frac{4}{12}$
$\frac{6}{9}$	$\frac{5}{15}$	$\frac{3}{9}$

5. Share $\$ 3.75$ equally among 3 people.

Each person gets \$ \qquad .

Share $\$ 10.00$ equally among 4 people.

Each person gets \$ \qquad -.
2. On which color is the spinner most likely to land? \qquad
Least likely to land? \qquad

4. Use a straightedge. Draw the other half of the symmetric shape.

6. Solve.
$6 \times 8=$ \qquad
$9 \times 9=$ \qquad
$7 \times 7=$ \qquad
\qquad
$=4 \times 8$

$$
=8 \times 9
$$

HOME LINK $8 \cdot 7$

Fractions and Mixed Numbers

Family Today the class began looking at fractions greater than 1 and mixed numbers. We have been Note working with region or area models (shaded areas) for these numbers. Problem 5 asks about fractions of a set. The whole is a dozen eggs, so each egg is $\frac{1}{12}$ of the whole. Have your child explain how he or she figured out what the fraction and mixed number should be for the egg-carton drawings.

Please return this Home Link to school tomorrow.

1. $\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}, \frac{1}{4}>\frac{1}{4}$

How many fourths? \qquad fourths

Write the fraction: \qquad
2.

How many fifths? \qquad fifths

Write the fraction: \qquad
3.

Color 7 thirds.
Write the mixed number: \qquad

Color 6 fourths.
Write the mixed number: \qquad

Color 9 fifths.

Write the mixed number: \qquad

Try This

4.

What fraction of the WHOLE carton is each egg? $\frac{\square}{12}$
5.

Write the fraction: $\frac{\square}{12}$
Write the fraction as a mixed number: \square
\square

Practice

Write these problems on the back of this page. Solve and show your work.
6.

301
$-\quad 288$

7. 27
$\begin{array}{r}+19 \\ \hline\end{array}$
8. 600
-476
9. 131
+99

+

Use only triangles, rhombuses, trapezoids, and hexagons from your pattern blocks to solve the problems below.

1. One hexagon is the WHOLE. Cover the WHOLE with triangles.
How many triangles fit in the whole hexagon? \qquad

Use your pattern blocks to build a figure that is greater than one WHOLE. Use your Pattern-Block Template to draw your figure below.

Cover your new drawing with triangles. How many triangles fit in your figure?
2. One trapezoid is the WHOLE. Cover the WHOLE with triangles.
How many triangles fit in the whole trapezoid? \qquad

Use your pattern blocks to build a figure that is greater than one WHOLE. Use your Pattern-Block Template to draw your figure below.

Cover your new drawing with triangles. How many triangles is your figure worth? \qquad

1. Identify at least 3 fractions that are between 80 and 81 . On a half-sheet of paper, record your fractions as mixed numbers and as fractions. Then place them on the number line below.

2. Identify at least 3 fractions that are between 2 and 5 . On a half-sheet of paper, record your fractions as mixed numbers and as fractions. Then place them on the number line below.

2
5

Fractions Greater than One

Place Value for Decimals

When we write a money amount like $\$ 6.23$, the number is a decimal. The place that each digit has in the number is very important.

dollars		dimes	pennies
6	\cdot	2	3

Decimals were invented by the Dutch scientist Simon Stevin, in 1585.

In England, 3.42 is written as $3 \cdot 42$. In France, 3.42 is written as 3,42 .

The decimal point separates dollars from cents.
The 6 is worth 6 dollars.
The 2 is worth 20 cents, or 2 dimes, or $\frac{2}{10}$ of a dollar.
The 3 is worth 3 cents, or 3 pennies, or $\frac{3}{100}$ of a dollar.
We can use a place-value chart to show how
much each digit in a decimal is worth.
The place for a digit is its position in the number.
The value of a digit is how much it is worth.

Example The number 3.456 is shown in a place-value chart below.

$\mathbf{1 s}$ ones place	$\mathbf{0 . 1 \mathbf { s }}$ tenths place	$\mathbf{0 . 0 1 \mathbf { s }}$ hundredths place	$\mathbf{0 . 0 0 1 \mathbf { s }}$ thousandths place	
3	\cdot	4	5	6

The 3 in the ones place is worth 3 (3 ones).
The 4 in the tenths place is worth 0.4 (4 tenths).
The 5 in the hundredths place is worth 0.05 (5 hundredths).
The 6 in the thousandths place is worth 0.006 (6 thousandths).
3.456 is read " 3 and 456 thousandths." The decimal point is read as "and."

Equivalent Fractions Game

Materials	
	$\square 1$ deck of Fraction Cards (Math Journal 2,
	Activity Sheets 5-8)
Players	2

Skill Recognizing fractions that are equivalent
Object of the game To collect more Fraction Cards.
Directions

1. Shuffle the Fraction Cards and place the deck picture-side down on the table.
2. Turn the top card over near the deck of cards.
3. Players take turns. When it is your turn, turn over the top card from the deck. Try to match this card with a picture-side up card on the table.

- If you find a match, take the 2 matching cards. Then, if there are no cards left picture-side up, turn the top card over near the deck.
- If you cannot find a match, place your card pictureside up next to the other cards. Your turn is over.

4. The game ends when all cards have been matched. The player with more cards wins.

Example The top card is turned over and put on the table. The picture shows $\frac{4}{6}$.

Player 1 turns over the $\frac{2}{3}$ card. This card matches $\frac{4}{6}$. Player 1 takes both cards. There are no cards left picture-side up. So Player 1 turns over the top card and puts it near the deck. The picture shows $\frac{6}{8}$.

Player 2 turns over the $\frac{0}{4}$ card. There is no match.
This card is placed next to $\frac{6}{8}$. It is Player 1 's turn again.

\section*{Equivalent Fractions Game (Advanced Version)
 | Materials \square | 1 deck of Fraction Cards |
| ---: | :--- |
| | (Math Journal 2, |
| | Activity Sheets 5-8) |
 Players 2}

Skill Recognizing fractions that are equivalent Object of the game To collect more Fraction Cards. Directions

1. Shuffle the Fraction Cards and place the deck picture-side down on the table.
2. Turn the top card over near the deck of cards.
3. Players take turns. When it is your turn, take the top card from the deck, but do not turn it over (keep the picture side down). Try to match the fraction with one of the picture-side up cards on the table.

- If you find a match, turn the card over to see if you matched the cards correctly. If you did, take both cards. Then, if there are no cards left picture-side up, turn the top card over.
- If there is no match, place your card next to the other cards, picture-side up. Your turn is over.
- If there is a match but you did not find it, the other player can take the matching cards.

4. The game ends when all cards have been matched. The player with more cards wins.

Fraction Top-It

Materials $\square 1$ deck of Fraction Cards (Math Journal 2, Activity Sheets 5-8)
Players 2
Skill Comparing fractions
Object of the game To collect more cards.

Directions

1. Shuffle the Fraction Cards and place the deck picture-side down on the table.
2. Each player turns over a card from the top of the deck. Players compare the shaded parts of the cards. The player with the larger fraction shaded takes both cards.
3. If the shaded parts are equal, the fractions are equivalent. Each player then turns over another card. The player with the larger fraction shaded takes all the cards from both plays.
4. The game is over when all cards have been taken from the deck. The player with more cards wins.

Examples Players turn over a $\frac{3}{4}$ card and a $\frac{4}{6}$ card.
The $\frac{3}{4}$ card has a larger shaded area. The player holding the $\frac{3}{4}$ card takes both cards.

$\frac{3}{4}$

Players turn over a $\frac{1}{2}$ card and a $\frac{4}{8}$ card. The shaded parts are equal. Each player turns over another card. The player with the larger Fraction Card takes all the cards.

Fraction Top-It (Advanced Version)

Materials $\square 1$ deck of Fraction Cards (Math Journal 2, Activity Sheets 5-8)
Players
2
Skill Comparing fractions
Object of the game To collect more cards.

Directions

1. Shuffle the Fraction Cards and place the deck picture-side down on the table.
2. Each player takes a card from the top of the deck but does not turn it over. The cards remain picture-side down.
3. Players take turns. When it is your turn:

- Say whether you think your fraction is greater than, less than, or equivalent to the other player's fraction.
- Turn the cards over and compare the shaded parts. If you were correct, take both cards. If you were wrong, the other player takes both cards.

4. The game is over when all cards have been taken from the deck. The player with more cards wins.

Example Joel draws a $\frac{2}{8}$ card. Sue draws a $\frac{1}{4}$ card. It is Sue's turn, and she says that her fraction is less than Joel's. They turn their cards over and find that the shaded areas are equal. The fractions are equivalent. Sue was wrong, so Joel takes both cards.

back to lesson
NOTE: Card backs show written fraction only.

Grade 3 Everyday Mathematics Student Math Journal © 2007 Wright Group/McGraw-Hill
All rights reserved, used with permission.

NOTE: Card backs show written fraction only.

9 ¡ӘӘЧS К!!^!!Э甘

Grade 3 Everyday Mathematics Student Math Journal © 2007 Wright Group/McGraw-Hill All rights reserved, used with permission.

NOTE: Card backs show written fraction only.

Grade 3 Everyday Mathematics Student Math Journal © 2007 Wright Group/McGraw-Hill
back to lesson
NOTE: Card backs show written fraction only.

[^1]

[^0]: Math Journal 2, p. 198

[^1]: $8 \cdot 5$ Fraction Cards

